Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Hum Genet ; 142(6): 819-834, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086329

RESUMEN

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Proteoma/genética , Pérdida Auditiva/genética , Mutación Missense , Sordera/genética
2.
Res Sq ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778238

RESUMEN

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.

3.
Genet Med ; 24(12): 2555-2567, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36194208

RESUMEN

PURPOSE: De novo variants (DNVs) are a well-recognized cause of genetic disorders. The contribution of DNVs to hearing loss (HL) is poorly characterized. We aimed to evaluate the rate of DNVs in HL-associated genes and assess their contribution to HL. METHODS: Targeted genomic enrichment and massively parallel sequencing were used for molecular testing of all exons and flanking intronic sequences of known HL-associated genes, with no exclusions on the basis of type of HL or clinical features. Segregation analysis was performed, and previous reports of DNVs in PubMed and ClinVar were reviewed to characterize the rate, distribution, and spectrum of DNVs in HL. RESULTS: DNVs were detected in 10% (24/238) of trios for whom segregation analysis was performed. Overall, DNVs were causative in at least ∼1% of probands for whom a genetic diagnosis was resolved, with marked variability based on inheritance mode and phenotype. DNVs of MITF were most common (21% of DNVs), followed by GATA3 (13%), STRC (13%), and ACTG1 (8%). Review of reported DNVs revealed gene-specific variability in contribution of DNV to the mutational spectrum of HL-associated genes. CONCLUSION: DNVs are a relatively common cause of genetic HL and must be considered in all cases of sporadic HL.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Pérdida Auditiva/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Exones , Péptidos y Proteínas de Señalización Intercelular
4.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33398081

RESUMEN

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Asunto(s)
Frecuencia de los Genes , Pérdida Auditiva/genética , Miosinas/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Genes Recesivos , Pérdida Auditiva/etnología , Pérdida Auditiva/patología , Humanos , Lactante , Judíos/genética , Masculino , Mutación , Linaje , Empalme del ARN
5.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32382995

RESUMEN

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Genotipo , Pérdida Auditiva Sensorineural/genética , Canales de Potasio KCNQ/genética , Proteínas de la Membrana/genética , Mutación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Audiometría , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Proteínas Ligadas a GPI/genética , Expresión Génica , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/etnología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Lactante , Recién Nacido , Japón , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Estados Unidos , Población Blanca
6.
Ophthalmic Genet ; 41(2): 151-158, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32281467

RESUMEN

Background: Usher syndrome is the most common hereditary syndrome combining deafness and blindness. In the 2017 National Child Count of Children and Youth who are Deaf-Blind, Usher syndrome represented 329 of 10,000 children, but there were also at least 70 other etiologies of deaf-blindness documented. The purpose of this study was to analyze the work-up and ultimate diagnoses of 21 consecutive families who presented to the Genetic Eye-Ear Clinic (GEEC) at the University of Iowa. Our hypothesis was that most families referred to the GEEC would have initial and final diagnoses of Usher syndrome.Materials and Methods: Patients were identified through an IRB approved retrospective chart review of referrals to the GEEC between 2012 and 2019. Details about each patient's history, exam, and clinical and genetic work-up were recorded.Results: From 2012 to 2019, 21 families (25 patients) were referred to the collaborative GEEC. Overall molecular diagnostic rate in this cohort was 14/21 (67%). Evaluation resulted in a change of diagnosis in 11/21 (52%) families. Ultimately, there were eleven unique diagnoses including hereditary, non-hereditary, and independent causes of combined visual impairment and hearing loss. The most common diagnosis was Usher syndrome, which represented 6/21 (29%) families.Conclusions: Providing a correct diagnosis for patients with visual impairment and hearing loss can be challenging for clinicians and their patients, but it can greatly improve clinical care and outcomes. We recommend an algorithm that includes multidisciplinary collaboration, careful clinical evaluation, strategic molecular testing, and consideration of a broad differential diagnosis.


Asunto(s)
Ceguera/diagnóstico , Sordera/diagnóstico , Marcadores Genéticos , Mutación , Síndromes de Usher/diagnóstico , Adolescente , Adulto , Ceguera/genética , Niño , Preescolar , Sordera/genética , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Síndromes de Usher/genética
7.
Cell Rep ; 26(11): 3160-3171.e3, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865901

RESUMEN

Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.


Asunto(s)
Sordera/genética , Órgano Espiral/metabolismo , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Órgano Espiral/crecimiento & desarrollo , Análisis de la Célula Individual
8.
Otolaryngol Head Neck Surg ; 159(6): 1058-1060, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30149782

RESUMEN

Comprehensive genetic testing has become integral in the evaluation of children with deafness, but the amount of blood required to obtain DNA can be prohibitive in newborns. Dried blood spots (DBSs) are routinely collected and would provide an alternative source of DNA. Our objective was to evaluate the use of DBSs for comprehensive genetic testing for deafness. DNA derived from fresh and archived DBS samples was compared with DNA from whole blood. We performed next-generation sequencing of all known deafness genes in 4 DBS samples: 2 positive controls, an unknown sample, and a negative control. The DBS-derived DNA was of sufficient quantity and quality for clinical testing. In the 2 positive control samples, pathogenic variants were identified; in the negative control, no pathogenic variants were found; and in the unknown sample, homozygous deletion of the OTOA gene was identified as the cause of deafness. This pilot study shows that comprehensive genetic testing for deafness is feasible with fresh and/or archived DBSs.


Asunto(s)
Sordera/sangre , Sordera/diagnóstico , Pruebas Genéticas/métodos , Bancos de Muestras Biológicas , Sordera/genética , Pruebas con Sangre Seca , Pruebas Hematológicas , Humanos
9.
Neurology ; 89(4): 385-394, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28667181

RESUMEN

OBJECTIVE: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. METHODS: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. RESULTS: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. CONCLUSIONS: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.


Asunto(s)
Encefalopatías/genética , Encefalopatías/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Adolescente , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Dinaminas , Femenino , Proteínas de Homeodominio , Humanos , Lactante , Masculino , Modelos Moleculares , Fenotipo , Proteína de la Caja Homeótica de Baja Estatura , Hermanos , Vesículas Sinápticas/metabolismo , Adulto Joven
10.
Ann Otol Rhinol Laryngol ; 125(11): 918-923, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27469136

RESUMEN

OBJECTIVE: Copy number variations (CNVs), a major cause of genetic hearing loss, most frequently involve the STRC gene, located on chr15q15.3 and causally related to autosomal recessive non-syndromic hearing loss (ARNSHL) at the DFNB16 locus. The interpretation of STRC sequence data can be challenging due to the existence of a virtually identical pseudogene, pSTRC, that promotes complex genomic rearrangements in this genomic region. Targeted genomic enrichment with massively parallel sequencing (TGE+MPS) has emerged as the preferred method by which to provide comprehensive genetic testing for hearing loss. We aimed to identify CNVs in the STRC region using established and validated bioinformatics methods. METHODS: We used TGE+MPS to identify the genetic cause of hearing loss. The CNV results were confirmed with customized array comparative genomic hybridization (array CGH). RESULTS: Three probands with progressive mild to moderate hearing loss were found among 40 subjects with ARNSHL to segregate homozygous STRC deletions and gene to pseudogene conversion. Array CGH showed that the deletions/conversions span multiple genes outside of the exons captured by TGE+MPS. CONCLUSION: These data further validate the necessity to integrate the detection of both simple variant changes and complex genomic rearrangements in the clinical diagnosis of genetic hearing loss.


Asunto(s)
Sordera/genética , Proteínas de la Membrana/genética , Adulto , Niño , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Femenino , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular , Masculino
11.
Biomed Res Int ; 2016: 6421039, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27243033

RESUMEN

Whole exome sequencing (WES) has revolutionized the way we think about and diagnose epileptic encephalopathies. Multiple recent review articles discuss the benefits of WES and suggest various algorithms to follow for determining the etiology of epileptic encephalopathies. Incorporation of WES in these algorithms is leading to the discovery of new genetic diagnoses of early onset epileptic encephalopathies (EOEEs) at a rapid rate; however, WES is not yet a universally utilized diagnostic tool. Clinical WES may be underutilized due to provider discomfort in ordering the test or perceived costliness. At our hospital WES is not routinely performed for patients with EOEE due to limited insurance reimbursement. In fact for any patient with noncommercial insurance (Medicaid) the institution does not allow sending out WES as this is not "established"/"proven to be highly useful and cost effective"/"approved test" in patients with epilepsy. Recently, we performed WES on four patients from three families and identified novel mutations in known epilepsy genes in all four cases. These patients had State Medicaid as their insurance carrier and were followed up for several years for EOEE while being worked up using the traditional/approved testing methods. Following a recently proposed diagnostic pathway, we analyzed the cost savings (US dollars) that could be accrued if WES was performed earlier in the diagnostic odyssey. This is the first publication that addresses the dollar cost of traditional testing in EOEE as performed in these four cases versus WES and the potential cost savings.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/economía , Pruebas Diagnósticas de Rutina/economía , Epilepsia/diagnóstico , Epilepsia/economía , Edad de Inicio , Encefalopatías/complicaciones , Niño , Preescolar , Epilepsia/complicaciones , Exoma , Femenino , Pruebas Genéticas/métodos , Genómica , Genotipo , Costos de la Atención en Salud , Humanos , Lactante , Seguro de Salud , Masculino , Medicaid , Fenotipo , Análisis de Secuencia de ADN , Tiempo de Tratamiento , Estados Unidos
12.
Brain Dev ; 38(9): 848-51, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27126216

RESUMEN

We describe the presentation and workup of two brothers with early-onset epileptic encephalopathy who became seizure-free on a ketogenic diet. Extensive testing culminated in whole exome sequencing, which led to the diagnosis of phosphatidyl inositol glycan biosynthesis class A protein (PIGA) deficiency. This familial case highlights the importance of genetic testing for early-onset epileptic encephalopathies and underscores the potential value of a ketogenic diet in the treatment of this condition.


Asunto(s)
Dieta Cetogénica , Epilepsia/dietoterapia , Epilepsia/etiología , Proteínas de la Membrana/deficiencia , Diagnóstico Diferencial , Epilepsia/diagnóstico , Epilepsia/genética , Técnicas de Genotipaje , Humanos , Lactante , Masculino , Proteínas de la Membrana/genética , Mutación , Linaje , Hermanos , Resultado del Tratamiento
13.
Hum Genet ; 135(4): 441-450, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26969326

RESUMEN

Hearing loss is the most common sensory deficit in humans, affecting 1 in 500 newborns. Due to its genetic heterogeneity, comprehensive diagnostic testing has not previously been completed in a large multiethnic cohort. To determine the aggregate contribution inheritance makes to non-syndromic hearing loss, we performed comprehensive clinical genetic testing with targeted genomic enrichment and massively parallel sequencing on 1119 sequentially accrued patients. No patient was excluded based on phenotype, inheritance or previous testing. Testing resulted in identification of the underlying genetic cause for hearing loss in 440 patients (39%). Pathogenic variants were found in 49 genes and included missense variants (49%), large copy number changes (18%), small insertions and deletions (18%), nonsense variants (8%), splice-site alterations (6%), and promoter variants (<1%). The diagnostic rate varied considerably based on phenotype and was highest for patients with a positive family history of hearing loss or when the loss was congenital and symmetric. The spectrum of implicated genes showed wide ethnic variability. These findings support the more efficient utilization of medical resources through the development of evidence-based algorithms for the diagnosis of hearing loss.


Asunto(s)
Pruebas Genéticas , Pérdida Auditiva/genética , Adolescente , Niño , Preescolar , Femenino , Heterogeneidad Genética , Pérdida Auditiva/diagnóstico , Humanos , Lactante , Masculino
14.
Ann Otol Rhinol Laryngol ; 125(5): 361-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26530094

RESUMEN

OBJECTIVE: To present audiometric data in 3 dimensions by considering age as an addition dimension. METHODS: Audioprofile surfaces (APSs) were fitted to a set of audiograms by plotting each measurement of an audiogram as an independent point in 3 dimensions with the x, y, and z axes representing frequency, hearing loss in dB, and age, respectively. RESULTS: Using the Java-based APS viewer as a standalone application, APSs were pre-computed for 34 loci. By selecting APSs for the appropriate genetic locus, a clinician can compare this APS-generated average surface to a specific patient's audiogram. CONCLUSION: Audioprofile surfaces provide an easily interpreted visual representation of a person's hearing acuity relative to others with the same genetic cause of hearing loss. Audioprofile surfaces will support the generation and testing of sophisticated hypotheses to further refine our understanding of the biology of hearing.


Asunto(s)
Audiometría de Tonos Puros/tendencias , Umbral Auditivo/fisiología , Pérdida Auditiva Sensorineural/diagnóstico , Audición/fisiología , Programas Informáticos , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Persona de Mediana Edad
15.
J Am Soc Nephrol ; 27(4): 1245-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26283675

RESUMEN

The thrombotic microangiopathies (TMAs) and C3 glomerulopathies (C3Gs) include a spectrum of rare diseases such as atypical hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, C3GN, and dense deposit disease, which share phenotypic similarities and underlying genetic commonalities. Variants in several genes contribute to the pathogenesis of these diseases, and identification of these variants may inform the diagnosis and treatment of affected patients. We have developed and validated a comprehensive genetic panel that screens all exons of all genes implicated in TMA and C3G. The closely integrated pipeline implemented includes targeted genomic enrichment, massively parallel sequencing, bioinformatic analysis, and a multidisciplinary conference to analyze identified variants in the context of each patient's specific phenotype. Herein, we present our 1-year experience with this panel, during which time we studied 193 patients. We identified 17 novel and 74 rare variants, which we classified as pathogenic (11), likely pathogenic (12), and of uncertain significance (68). Compared with controls, patients with C3G had a higher frequency of rare and novel variants in C3 convertase (C3 and CFB) and complement regulator (CFH, CFI, CFHR5, and CD46) genes (P<0.05). In contrast, patients with TMA had an increase in rare and novel variants only in complement regulator genes (P<0.01), a distinction consistent with differing sites of complement dysregulation in these two diseases. In summary, we were able to provide a positive genetic diagnosis in 43% and 41% of patients carrying the clinical diagnosis of C3G and TMA, respectively.


Asunto(s)
Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Glomérulos Renales , Microangiopatías Trombóticas/diagnóstico , Microangiopatías Trombóticas/genética , Adolescente , Niño , Preescolar , Complemento C3 , Femenino , Pruebas Genéticas/métodos , Humanos , Enfermedades Renales/inmunología , Masculino
16.
Ann Otol Rhinol Laryngol ; 124 Suppl 1: 177S-83S, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25788561

RESUMEN

OBJECTIVES: We present a family with a mitochondrial DNA 3243A>G mutation resulting in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), of which some members have hearing loss in which a novel mutation in the P2RX2 gene was identified. METHODS: One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known nonsyndromic hearing loss genes were performed to identify the genetic causes of hearing loss. RESULTS: A novel mutation in the P2RX2 gene that corresponded to c.601G>A (p.Asp201Tyr) was identified. Two patients carried the mutation and had severe sensorineural hearing loss, while other members with MELAS (who did not carry the P2RX2 mutation) had normal hearing. CONCLUSION: This is the first case report of a diagnosis of hearing loss caused by P2RX2 mutation in patients with MELAS. A potential explanation is that a decrease in adenosine triphosphate (ATP) production due to MELAS with a mitochondrial 3243A>G mutation might suppress activation of P2X2 receptors. We also suggest that hearing loss caused by the P2RX2 mutation might be influenced by the decrease in ATP production due to MELAS.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Síndrome MELAS/genética , Mitocondrias/genética , Receptores Purinérgicos P2X2/genética , Adenosina Trifosfato/metabolismo , Sordera/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome MELAS/metabolismo , Persona de Mediana Edad , Linaje , Análisis de Secuencia de ADN/métodos
17.
Ann Otol Rhinol Laryngol ; 124 Suppl 1: 184S-92S, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25788564

RESUMEN

OBJECTIVES: We present 3 patients with congenital sensorineural hearing loss (SNHL) caused by novel PTPRQ mutations, including clinical manifestations and phenotypic features. METHODS: Two hundred twenty (220) Japanese subjects with SNHL from unrelated and nonconsanguineous families were enrolled in the study. Targeted genomic enrichment with massively parallel DNA sequencing of all known nonsyndromic hearing loss genes was performed to identify the genetic cause of hearing loss. RESULTS: Four novel causative PTPRQ mutations were identified in 3 cases. Case 1 had progressive profound SNHL with a homozygous nonsense mutation. Case 2 had nonprogressive profound SNHL with a compound heterozygous mutation (nonsense and missense mutation). Case 3 had nonprogressive moderate SNHL with a compound heterozygous mutation (missense and splice site mutation). Caloric test and vestibular evoked myogenic potential (VEMP) test showed vestibular dysfunction in Case 1. CONCLUSION: Hearing loss levels and progression among the present cases were varied, and there seem to be no obvious correlations between genotypes and the phenotypic features of their hearing loss. The PTPRQ mutations appeared to be responsible for vestibular dysfunction.


Asunto(s)
Codón sin Sentido , Pérdida Auditiva Sensorineural/genética , Mutación Missense , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Pueblo Asiatico/genética , Audiometría de Tonos Puros , Análisis Mutacional de ADN/métodos , Sordera/genética , Potenciales Evocados Auditivos , Pérdida Auditiva Sensorineural/congénito , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linaje
18.
Ann Otol Rhinol Laryngol ; 124 Suppl 1: 169S-76S, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792666

RESUMEN

OBJECTIVES: In this report, we present a male patient with no family history of hearing loss, in whom we identified a novel de novo mutation in the POU3F4 gene. METHODS: One hundred ninety-four (194) Japanese subjects from unrelated and nonconsanguineous families were enrolled in this study. We used targeted genomic enrichment and massively parallel sequencing of all known nonsyndromic hearing loss genes for identifying the genetic causes of hearing loss. RESULTS: A novel de novo frameshift mutation of POU3F4 to c.727_728insA (p.N244KfsX26) was identified. The patient was a 7-year-old male with congenital progressive hearing loss and inner ear deformity. Although the patient had received a cochlear implant, auditory skills were still limited. The patient also exhibited developmental delays similar to those previously associated with POU3F4 mutation. CONCLUSION: This is the first report of a mutation in POU3F4 causing hearing loss in a Japanese patient without a family history of hearing loss. This study underscores the importance of comprehensive genetic testing of patients with hearing loss for providing accurate prognostic information and guiding the optimal management of patient rehabilitation.


Asunto(s)
Mutación del Sistema de Lectura , Factores del Dominio POU/genética , Pueblo Asiatico/genética , Niño , Análisis Mutacional de ADN , Sordera/genética , Discapacidades del Desarrollo/genética , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino
19.
Ann Otol Rhinol Laryngol ; 124 Suppl 1: 123S-8S, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25743181

RESUMEN

OBJECTIVE: We present 2 patients who were identified with mutations in the GPR98 gene that causes Usher syndrome type 2 (USH2). METHODS: One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known nonsyndromic hearing loss genes were used to identify the genetic causes of hearing loss. RESULTS: We identified causative mutations in the GPR98 gene in 1 family (2 siblings). The patients had moderate sloping hearing loss, and no progression was observed over a period of 10 years. Fundus examinations were normal. However, electroretinograms revealed impaired responses in both patients. CONCLUSION: Early diagnosis of Usher syndrome has many advantages for patients and their families. This study supports the use of comprehensive genetic diagnosis for Usher syndrome, especially prior to the onset of visual symptoms, to provide the highest chance of diagnostic success in early life stages.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Receptores Acoplados a Proteínas G/genética , Síndromes de Usher/genética , Adolescente , Pueblo Asiatico/genética , Electrorretinografía , Femenino , Humanos , Mutación , Análisis de Secuencia de ADN/métodos
20.
Bioinformatics ; 30(23): 3438-9, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25123904

RESUMEN

UNLABELLED: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. AVAILABILITY AND IMPLEMENTATION: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Variación Genética , Algoritmos , Humanos , Internet , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA