Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Methods Mol Biol ; 2119: 25-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31989512

RESUMEN

The study of mitochondrial DNA (mtDNA) integrity and how replication, transcription, repair, and degradation maintain mitochondrial function has been hampered due to the inability to identify mtDNA structural forms. Here we describe the use of 2D intact mtDNA agarose gel electrophoresis, or 2D-IMAGE, to identify up to 25 major mtDNA topoisomers such as double-stranded circular mtDNA (including supercoiled molecules, nicked circles, and multiple catenated species) and various forms containing single-stranded DNA (ssDNA) structures. Using this modification of a classical 1D gel electrophoresis procedure, many of the identified mtDNA species have been associated with mitochondrial replication, damage, deletions, and possibly transcription. The increased resolution of 2D-IMAGE allows for the identification and monitoring of novel mtDNA intermediates to reveal alterations in genome replication, transcription, repair, or degradation associated with perturbations during mitochondrial stress.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Electroforesis en Gel Bidimensional , Mitocondrias/metabolismo , Animales , ADN Mitocondrial/análisis , ADN Mitocondrial/metabolismo , Electroforesis en Gel de Agar , Humanos
2.
Mitochondrion ; 30: 126-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26923168

RESUMEN

Mutations in genes coding for mitochondrial helicases such as TWINKLE and DNA2 are involved in mitochondrial myopathies with mtDNA instability in both human and mouse. We show that inactivation of Pif1, a third member of the mitochondrial helicase family, causes a similar phenotype in mouse. pif1-/- animals develop a mitochondrial myopathy with respiratory chain deficiency. Pif1 inactivation is responsible for a deficiency to repair oxidative stress-induced mtDNA damage in mouse embryonic fibroblasts that is improved by complementation with mitochondrial isoform mPif1(67). These results open new perspectives for the exploration of patients with mtDNA instability disorders.


Asunto(s)
ADN Helicasas/antagonistas & inhibidores , Silenciador del Gen , Miopatías Mitocondriales/genética , Animales , Células Cultivadas , Fibroblastos/fisiología , Ratones , Ratones Noqueados , Enfermedades Mitocondriales
4.
Sci Signal ; 8(366): ra23, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25737585

RESUMEN

Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.


Asunto(s)
Proteínas Aviares/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Aviares/genética , Canales de Calcio/genética , Línea Celular , Pollos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Retículo Endoplásmico , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteína ORAI1 , Molécula de Interacción Estromal 1
5.
Free Radic Biol Med ; 75: 241-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25106705

RESUMEN

A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse ("PolG" mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.


Asunto(s)
ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Estrés Oxidativo/genética , Envejecimiento/genética , Envejecimiento Prematuro/genética , Animales , Antioxidantes/metabolismo , Línea Celular , Roturas del ADN , ADN Polimerasa gamma , Replicación del ADN/genética , ADN Mitocondrial/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/genética , Músculo Esquelético/metabolismo , Mutación , Oxidación-Reducción
6.
BMC Genomics ; 15: 677, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25124333

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) deletions cause disease and accumulate during aging, yet our understanding of the molecular mechanisms underlying their formation remains rudimentary. Guanine-quadruplex (GQ) DNA structures are associated with nuclear DNA instability in cancer; recent evidence indicates they can also form in mitochondrial nucleic acids, suggesting that these non-B DNA structures could be associated with mtDNA deletions. Currently, the multiple types of GQ sequences and their association with human mtDNA stability are unknown. RESULTS: Here, we show an association between human mtDNA deletion breakpoint locations (sites where DNA ends rejoin after deletion of a section) and sequences with G-quadruplex forming potential (QFP), and establish the ability of selected sequences to form GQ in vitro. QFP contain four runs of either two or three consecutive guanines (2G and 3G, respectively), and we identified four types of QFP for subsequent analysis: intrastrand 2G, intrastrand 3G, duplex derived interstrand (ddi) 2G, and ddi 3G QFP sequences. We analyzed the position of each motif set relative to either 5' or 3' unique mtDNA deletion breakpoints, and found that intrastrand QFP sequences, but not ddi QFP sequences, showed significant association with mtDNA deletion breakpoint locations. Moreover, a large proportion of these QFP sequences occur at smaller distances to breakpoints relative to distribution-matched controls. The positive association of 2G QFP sequences persisted when breakpoints were divided into clinical subgroups. We tested in vitro GQ formation of representative mtDNA sequences containing these 2G QFP sequences and detected robust GQ structures by UV-VIS and CD spectroscopy. Notably, the most frequent deletion breakpoints, including those of the "common deletion", are bounded by 2G QFP sequence motifs. CONCLUSIONS: The potential for GQ to influence mitochondrial genome stability supports a high-priority investigation of these structures and their regulation in normal and pathological mitochondrial biology. These findings emphasize the potential importance of helicases that subsequently resolve GQ to maintain the stability of the mitochondrial genome.


Asunto(s)
ADN Mitocondrial/genética , Rotura Cromosómica , G-Cuádruplex , Eliminación de Gen , Genoma Mitocondrial , Inestabilidad Genómica , Humanos , Secuencias Invertidas Repetidas
7.
Nucleic Acids Res ; 41(4): e58, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275548

RESUMEN

The mitochondrial genome exists in numerous structural conformations, complicating the study of mitochondrial DNA (mtDNA) metabolism. Here, we describe the development of 2D intact mtDNA agarose gel electrophoresis (2D-IMAGE) for the separation and detection of approximately two-dozen distinct topoisomers. Although the major topoisomers were well conserved across many cell and tissue types, unique differences in certain cells and tissues were also observed. RNase treatment revealed that partially hybridized RNAs associated primarily with covalently closed circular DNA, consistent with this structure being the template for transcription. Circular structures composed of RNA:DNA hybrids contained only heavy-strand DNA sequences, implicating them as lagging-strand replication intermediates. During recovery from replicative arrest, 2D-IMAGE showed changes in both template selection and replication products. These studies suggest that discrete topoisomers are associated with specific mtDNA-directed processes. Because of the increased resolution, 2D-IMAGE has the potential to identify novel mtDNA intermediates involved in replication or transcription, or pathology including oxidative linearization, deletions or depletion.


Asunto(s)
ADN Mitocondrial/química , Electroforesis en Gel de Agar/métodos , Genoma Mitocondrial , Animales , Línea Celular , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas/metabolismo , ADN Mitocondrial/aislamiento & purificación , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/análisis , ADN de Cadena Simple/aislamiento & purificación , Etidio/farmacología , Humanos , Ratones , ARN/química
8.
Nat Cell Biol ; 14(12): 1336-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23178883

RESUMEN

Ca(2+) flux across the mitochondrial inner membrane regulates bioenergetics, cytoplasmic Ca(2+) signals and activation of cell death pathways. Mitochondrial Ca(2+) uptake occurs at regions of close apposition with intracellular Ca(2+) release sites, driven by the inner membrane voltage generated by oxidative phosphorylation and mediated by a Ca(2+) selective ion channel (MiCa; ref. ) called the uniporter whose complete molecular identity remains unknown. Mitochondrial calcium uniporter (MCU) was recently identified as the likely ion-conducting pore. In addition, MICU1 was identified as a mitochondrial regulator of uniporter-mediated Ca(2+) uptake in HeLa cells. Here we identified CCDC90A, hereafter referred to as MCUR1 (mitochondrial calcium uniporter regulator 1), an integral membrane protein required for MCU-dependent mitochondrial Ca(2+) uptake. MCUR1 binds to MCU and regulates ruthenium-red-sensitive MCU-dependent Ca(2+) uptake. MCUR1 knockdown does not alter MCU localization, but abrogates Ca(2+) uptake by energized mitochondria in intact and permeabilized cells. Ablation of MCUR1 disrupts oxidative phosphorylation, lowers cellular ATP and activates AMP kinase-dependent pro-survival autophagy. Thus, MCUR1 is a critical component of a mitochondrial uniporter channel complex required for mitochondrial Ca(2+) uptake and maintenance of normal cellular bioenergetics.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Células COS , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética
9.
Biochim Biophys Acta ; 1819(9-10): 921-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22465614

RESUMEN

Mitochondrial transcription factor A (mtTFA, mtTF1, TFAM) is an essential protein that binds mitochondrial DNA (mtDNA) with and without sequence specificity to regulate both mitochondrial transcription initiation and mtDNA copy number. The abundance of mtDNA generally reflects TFAM protein levels; however, the precise mechanism(s) by which this occurs remains a matter of debate. Data suggest that the usage of mitochondrial promoters is regulated by TFAM dosage, allowing TFAM to affect both gene expression and RNA priming for first strand mtDNA replication. Additionally, TFAM has a non-specific DNA binding activity that is both cooperative and high affinity. TFAM can compact plasmid DNA in vitro, suggesting a structural role for the non-specific DNA binding activity in genome packaging. This review summarizes TFAM-mtDNA interactions and describes an emerging view of TFAM as a multipurpose coordinator of mtDNA transactions, with direct consequences for the maintenance of gene expression and genome copy number. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Mitocondrial , Mitocondrias , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Empaquetamiento del ADN , Replicación del ADN/genética , ADN Mitocondrial/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Transcripción Genética
10.
Nat Genet ; 41(7): 833-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19503089

RESUMEN

Defects in mitochondrial translation are among the most common causes of mitochondrial disease, but the mechanisms that regulate mitochondrial translation remain largely unknown. In the yeast Saccharomyces cerevisiae, all mitochondrial mRNAs require specific translational activators, which recognize sequences in 5' UTRs and mediate translation. As mammalian mitochondrial mRNAs do not have significant 5' UTRs, alternate mechanisms must exist to promote translation. We identified a specific defect in the synthesis of the mitochondrial DNA (mtDNA)-encoded COX I subunit in a pedigree segregating late-onset Leigh syndrome and cytochrome c oxidase (COX) deficiency. We mapped the defect to chromosome 17q by functional complementation and identified a homozygous single-base-pair insertion in CCDC44, encoding a member of a large family of hypothetical proteins containing a conserved DUF28 domain. CCDC44, renamed TACO1 for translational activator of COX I, shares a notable degree of structural similarity with bacterial homologs, and our findings suggest that it is one of a family of specific mammalian mitochondrial translational activators.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Enfermedad de Leigh/genética , Proteínas de Microfilamentos/genética , Cromosomas Humanos Par 17 , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Repeticiones de Microsatélite , Mutación
11.
J Cell Biol ; 163(3): 457-61, 2003 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-14597775

RESUMEN

The yeast mitochondrial chaperonin Hsp60 has previously been implicated in mitochondrial DNA (mtDNA) transactions: it is found in mtDNA nucleoids associated with single-stranded DNA; it binds preferentially to the template strand of active mtDNA ori sequences in vitro; and wild-type (rho+) mtDNA is unstable in hsp60 temperature-sensitive (ts) mutants grown at the permissive temperature. Here we show that the mtDNA instability is caused by a defect in mtDNA transmission to daughter cells. Using high resolution, fluorescence deconvolution microscopy, we observe a striking alteration in the morphology of mtDNA nucleoids in rho+ cells of an hsp60-ts mutant that suggests a defect in nucleoid division. We show that rho- petite mtDNA consisting of active ori repeats is uniquely unstable in the hsp60-ts mutant. This instability of ori rho- mtDNA requires transcription from the canonical promoter within the ori element. Our data suggest that the nucleoid dynamics underlying mtDNA transmission are regulated by the interaction between Hsp60 and mtDNA ori sequences.


Asunto(s)
Chaperonina 60/metabolismo , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , División Celular/genética , Chaperonina 60/genética , Replicación del ADN/genética , Mitocondrias/genética , Mutación/genética , Regiones Promotoras Genéticas/genética , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA