Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010862

RESUMEN

Industrial biotechnology develops and applies microorganisms for the production of bioproducts and enzymes with applications ranging from food and feed ingredients and processing to bio-based chemicals, biofuels and pharmaceutical products. Next generation DNA sequencing technologies play an increasingly important role in improving and accelerating microbial strain development for existing and novel bio-products via screening, gene and pathway discovery, metabolic engineering and additional optimization and understanding of large-scale manufacturing. In this mini-review, we describe novel DNA sequencing and analysis technologies with a focus on applications to industrial strain development, enzyme discovery and microbial community analysis.


Asunto(s)
Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiología Industrial , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación
2.
Appl Environ Microbiol ; 74(24): 7507-13, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18931290

RESUMEN

Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis alpha-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Subtilisina/genética , Subtilisina/metabolismo , Bacillus subtilis/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
3.
Protein Expr Purif ; 55(1): 40-52, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17574434

RESUMEN

A fusion protein based expression system was developed in the Gram-positive bacterium Bacillus subtilis to produce the soybean Bowman-Birk protease inhibitor (sBBI). The N-terminus of the mature sBBI was fused to the C-terminus of the 1st cellulose binding domain linker (CBD linker) of the BCE103 cellulase (from an alkalophilic Bacillus sp.). The strong aprE promoter was used to drive the transcription of the fusion gene and the AprE signal sequence was fused to the mature BCE103 cellulase for efficient secretion of the fusion protein into the culture medium. It was necessary to use a B. subtilis strain deficient in nine protease genes in order to reduce the proteolytic degradation of the fusion protein during growth. The fusion protein was produced in shake flasks at concentrations >1g/L. After growth, the sBBI was activated by treatment with 2-mercaptoethanol to allow the disulfide bonds to form correctly. An economical and scalable purification process was developed to purify sBBI based on acid precipitation of the fusion protein followed by acid/heat cleavage of the fusion protein at labile Asp-Pro bonds in the CBD linker. If necessary, non-native amino acids at the N- and C-termini were trimmed off using glutamyl endopeptidase I. After purification, an average of 72 mg of active sBBI were obtained from 1L of culture broth representing an overall yield of 21% based on the amount of sBBI activated before purification.


Asunto(s)
Bacillus subtilis/genética , Proteínas Recombinantes de Fusión/biosíntesis , Inhibidor de la Tripsina de Soja de Bowman-Birk/biosíntesis , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Celulasa/química , Celulasa/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Serina Endopeptidasas/química , Subtilisinas/genética , Inhibidor de la Tripsina de Soja de Bowman-Birk/genética , Inhibidor de la Tripsina de Soja de Bowman-Birk/aislamiento & purificación
4.
Microbiology (Reading) ; 150(Pt 2): 427-436, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14766921

RESUMEN

In bacteria, SsrA, a highly conserved RNA molecule, functions in a mechanism meant to rescue stalled ribosomes. In this process, a peptide tag encoded by SsrA is cotranslationally added to truncated polypeptides, thereby targeting these molecules for proteolytic degradation, at least when they stay inside the cell. This study examined the fate of two extracellular proteins that were tagged by the SsrA system of Bacillus subtilis. Gene constructs encoding human interleukin-3 (hIL-3) fused to a signal peptide and B. subtilis alpha-amylase, both lacking an in-frame stop codon, were used as models to achieve ribosome stalling and activation of the SsrA system. Introduction of these gene constructs into B. subtilis led to tagging of the gene products by SsrA RNA. The tagged protein products bound to antibodies that were raised against the proteolysis tag encoded by B. subtilis SsrA [(A)GKTNSFNQNVALAA]. The apolar C-terminal SsrA-tag does not function as a specific signal for proteolytic degradation of SsrA-tagged amylase directly after trans-translation or during the secretion process. Also, SsrA-tagged amylase appeared to be very stable once outside the cell. In contrast, hIL-3 molecules tagged with the native, apolar SsrA-tag were considerably less stable than hIL-3 molecules that received a negatively charged control tag. Not one specific protease, but several non-specific proteases seem to play a role in the rapid degradation of SsrA-tagged hIL-3. The polarity of the C-terminus of heterologous hIL-3 protein proved to be an important determinant for protein stability when produced by B. subtilis. As observed previously in Escherichia coli and B. subtilis, SsrA tagging also occurs frequently in normally growing Gram-positive bacilli and it appears that intracellular proteins are the predominant natural substrates of SsrA.


Asunto(s)
Bacillus subtilis/genética , ARN Bacteriano/genética , Secuencia de Bases , ADN Bacteriano/genética , Humanos , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Plásmidos , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/metabolismo , alfa-Amilasas/genética
5.
Infect Immun ; 71(11): 6192-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14573636

RESUMEN

In a search for the genetic basis for the structural difference between the related Streptococcus pneumoniae capsular serotypes 15B and 15C and for the reported reversible switching between these serotypes, the corresponding capsular polysaccharide synthesis (cps) loci were investigated by keeping in mind that at the structural level, the capsules differ only in O acetylation. The cps locus of a serotype 15B strain was identified, partially PCR amplified with primers based on the related serotype 14 sequence, and sequenced. Sequence analysis revealed, among other open reading frames, an intact open reading frame (designated cps15bM) whose product, at the protein level, exhibited characteristics of previously identified acetyltransferases. Genetic analysis of the corresponding region in a serotype15C strain indicated that the same gene was present but had a premature stop in translation. Closer analysis indicated that the serotype 15B gene contained a short tandem TA repeat consisting of eight TA units. In serotype 15C, this gene contained nine TA units that resulted in a frameshift and a truncated product. Genetic analysis of 17 serotype 15B and 15C clinical isolates revealed a perfect correlation between the serotype and the length of the short tandem repeat in the putative O-acetyltransferase gene. The number of TA repeating units varied between seven and nine in the various isolates. Together, the data strongly suggest that the structural difference between serotypes 15B and 15C is based on variation in the short tandem TA repeat in the O-acetyltransferase gene and that the transition between serotypes is due to slipped-strand mispairing with deletion or insertion of TA units in the cps15bM gene.


Asunto(s)
Cápsulas Bacterianas/química , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/genética , Acetiltransferasas/genética , Secuencia de Aminoácidos , Cápsulas Bacterianas/genética , Secuencia de Bases , Glicerofosfatos/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Serotipificación , Secuencias Repetidas en Tándem
6.
Microbiology (Reading) ; 148(Pt 6): 1747-1755, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12055294

RESUMEN

The capsular polysaccharide (CPS) synthesis locus of Streptococcus pneumoniae serotype 9V was amplified by long-range PCR and sequenced. The locus was 17368 bp in size and contained 15 ORFs. The genetic organization of the cluster shared many features with other S. pneumoniae capsule loci, including the presence of four putative regulatory genes at the 5' end. Comparative sequence analyses allowed putative functions to be assigned to each of the gene products. The ORFs appeared to encode, besides the four regulatory genes, five glycosyltransferases, two O-acetyltransferases, an N-acetylglucosamine 2-epimerase, a glucose 6-dehydrogenase, an oligosaccharide transporter protein and a polysaccharide repeating unit polymerase. These functions covered the steps proposed in the CPS biosynthesis of serotype 9V. TLC of carbohydrate intermediates formed after incubation of bacterial membrane preparations with 14C-labelled precursors demonstrated that the fifth ORF (cps9vE) encoded a UDP-glucosyl-1-phosphate transferase. This function was confirmed with the help of a cps9vE mutant that carried a deletion of a guanine residue located adjacent to a stretch of adenines. The identification and characterization of the serotype 9V locus is a major step in unravelling the 9V capsule biosynthesis pathway and broadens the insight into the genetic diversity of the S. pneumoniae capsule loci.


Asunto(s)
Cápsulas Bacterianas/biosíntesis , Cápsulas Bacterianas/genética , Genes Bacterianos/genética , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/genética , Acetiltransferasas/genética , Glicosiltransferasas/genética , Datos de Secuencia Molecular , Mutación , Sistemas de Lectura Abierta/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Streptococcus pneumoniae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA