Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Microbiol ; 24(1): 194, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849775

RESUMEN

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.


Asunto(s)
Ascomicetos , Bacillus , Genoma Bacteriano , Glycine max , Enfermedades de las Plantas , Animales , Bacillus/genética , Glycine max/microbiología , Glycine max/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Genoma Bacteriano/genética , Ascomicetos/genética , Rhizoctonia/genética , Control Biológico de Vectores , Agentes de Control Biológico , Secuenciación Completa del Genoma , Tylenchoidea , Filogenia , Antibiosis , Brasil
2.
Front Plant Sci ; 14: 1299025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098795

RESUMEN

Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.

3.
Plants (Basel) ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37050181

RESUMEN

Soybean is the primary source of vegetable protein and is used for various purposes, mainly to feed animals. This crop can have diverse seed coat colors, varying from yellow, black, brown, and green to bicolor. Black seed coat cultivars have already been assigned as favorable for both seed and grain production. Thus, this work aimed to identify genes associated with soybean seed quality by comparing the transcriptomes of soybean seeds with contrasting seed coat colors. The results from RNA-seq analyses were validated with real-time PCR using the cultivar BRS 715A (black seed coat) and the cultivars BRS 413 RR and DM 6563 IPRO (yellow seed coat). We found 318 genes differentially expressed in all cultivars (freshly harvested seeds and seeds stored in cold chamber). From the in silico analysis of the transcriptomes, the following genes were selected and validated with RT-qPCR: ACS1, ACSF3, CYP90A1, CYP710A1, HCT, CBL, and SAHH. These genes are genes induced in the black seed coat cultivar and are part of pathways responsible for ethylene, lipid, brassinosteroid, lignin, and sulfur amino acid biosynthesis. The BRSMG 715A gene has almost 4times more lignin than the yellow seed coat cultivars. These attributes are related to the BRSMG 715A cultivar's higher seed quality, which translates to more longevity and resistance to moisture and mechanical damage. Future silencing studies may evaluate the knockout of these genes to better understand the biology of soybean seeds with black seed coat.

4.
Genet Mol Biol ; 46(1 Suppl 1): e20220217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36880696

RESUMEN

Recent advances in genome editing have enormously enhanced the effort to develop biotechnology crops for more sustainable food production. CRISPR/Cas, the most versatile genome-editing tool, has shown the potential to create genome modifications that range from gene knockout and gene expression pattern modulations to allele-specific changes in order to design superior genotypes harboring multiple improved agronomic traits. However, a frequent bottleneck is the delivery of CRISPR/Cas to crops that are less amenable to transformation and regeneration. Several technologies have recently been proposed to overcome transformation recalcitrance, including HI-Edit/IMGE and ectopic/transient expression of genes encoding morphogenic regulators. These technologies allow the eroding of the barriers that make crops inaccessible for genome editing. In this review, we discuss the advances in genome editing in crops with a particular focus on the use of technologies to improve complex traits such as water use efficiency, drought stress, and yield in maize.

5.
Front Plant Sci ; 13: 1039041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466275

RESUMEN

AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.

6.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232478

RESUMEN

The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.


Asunto(s)
Proteínas Mitocondriales , NAD , Animales , Mamíferos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , NAD/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo
7.
Gene ; 810: 146055, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34737003

RESUMEN

Water stress drastically hinders crop yield, including soybean - one of the world's most relevant feeding crops - threatening the food security of an ever-growing global population. Hemoglobins (GLBs) are involved in water stress tolerance; however, the role they effectively play in soybean remains underexplored. In this study, in silico and in vivo analyses were performed to identify soybean GLBs, capture their transcriptional profile under water stress, and overexpress promising members to assess how soybean cope with waterlogging. Seven GLBs were found, two GLB1 (non-symbiotic) and five GLB2 (symbiotic or leghemoglobins). Three out of the seven GLBs were differentially expressed in soybean RNA-seq libraries of water stress and were evaluated by real-time PCR. Consistently, GmGLB1-1 and GmGLB1-2 were moderately and highly expressed under waterlogging, respectively. Composite plants with roots overexpressing GmGLB1-1 or GmGLB1-2 (mostly) showed higher transcript abundance of stress-defensive genes involved in anaerobic, nitrogen, carbon, and antioxidant metabolism when subjected to waterlogging. In addition, soybean bearing p35S:GmGLB1-2 had lower H2O2 root content, a reactive oxygen species (ROS), under water excess compared with the control condition. Altogether these results suggest that GmGLB1-2 is a strong candidate for soybean genetic engineering to generate waterlogging-tolerant soybean cultivars.


Asunto(s)
Glycine max/genética , Hemoglobinas/genética , Proteínas de Plantas/genética , Expresión Génica , Genoma de Planta , Hemoglobinas/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glycine max/fisiología , Estrés Fisiológico , Agua
8.
Genet Mol Biol ; 43(2): e20180290, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32478791

RESUMEN

Water deficit is one of the major limitations to soybean production worldwide, yet the genetic basis of drought-responsive mechanisms in crops remains poorly understood. In order to study the gene expression patterns in leaves and roots of soybean, two contrasting genotypes, Embrapa 48 (drought-tolerant) and BR 16 (drought-sensitive), were evaluated under moderate and severe water deficit. Transcription factors from the AP2/EREBP and WRKY families were investigated. Embrapa 48 showed 770 more up-regulated genes than BR 16, in eight categories. In general, leaves presented more differentially expressed genes (DEGs) than roots. Embrapa 48 responded to water deficit faster than BR 16, presenting a greater number of DEGs since the first signs of drought. Embrapa 48 exhibited initial modulation of genes associated with stress, while maintaining the level of the ones related to basic functions. The genes expressed exclusively in the drought-tolerant cultivar, belonging to the category of dehydration responsive genes, and the ones with a contrasting expression pattern between the genotypes are examples of important candidates to confer tolerance to plants. Finally, this study identified genes of the AP2/EREBP and WRKY families related to drought tolerance.

9.
PeerJ ; 8: e7905, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31942248

RESUMEN

BACKGROUND: The co-inoculation of soybean with Bradyrhizobium and other plant growth-promoting rhizobacteria (PGPR) is considered a promising technology. However, there has been little quantitative analysis of the effects of this technique on yield variables. In this context, the present study aiming to provide a quantification of the effects of the co-inoculation of Bradyrhizobium and PGPR on the soybean crop using a meta-analysis approach. METHODS: A total of 42 published articles were examined, all of which considered the effects of co-inoculation of PGPR and Bradyrhizobium on the number of nodules, nodule biomass, root biomass, shoot biomass, shoot nitrogen content, and grain yield of soybean. We also determined whether the genus of the PGPR used as co-inoculant, as well as the experimental conditions, altered the effect size of the PGPR. RESULTS: The co-inoculation technology resulted in a significant increase in nodule number (11.40%), nodule biomass (6.47%), root biomass (12.84%), and shoot biomass (6.53%). Despite these positive results, no significant increase was observed in shoot nitrogen content and grain yield. The response of the co-inoculation varied according to the PGPR genus used as co-inoculant, as well as with the experimental conditions. In general, the genera Azospirillum, Bacillus, and Pseudomonas were more effective than Serratia. Overall, the observed increments were more pronounced under pot than that of field conditions. Collectively, this study summarize that co-inoculation improves plant development and increases nodulation, which may be important in overcoming nutritional limitations and potential stresses during the plant growth cycle, even though significant increases in grain yield have not been evidenced by this data meta-analysis.

10.
Physiol Mol Biol Plants ; 24(6): 1059-1067, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30425423

RESUMEN

Water deficit is one of the main factors that reduce grain yield. A better understanding of the mechanisms related to this abiotic stress is a key aspect to design and act upon drought tolerance improvement in crop plants. Therefore, the major objective of this study was to investigate four common bean genotypes for drought tolerance and to establish their tolerance mechanisms. The experiment was carried out in a greenhouse, using the completely randomized design in a factorial arrangement (2 × 4), composed by 2 water conditions (well-watered and water deficit) and 4 cultivars, with six replicates per treatment. The four cultivars, two drought-sensitive (IAC Tybatã and BRS Pontal) and two drought-tolerant (IAPAR 81 and BAT 477), were evaluated for some physiological, biochemical and morphoagronomic traits. Drought promoted physiological and metabolic changes in the plants, reflecting on the morphoagronomic traits. Under water deficit, the genotype IAPAR 81 stood out from the others in terms of physiological characters, however, it presented a low efficiency concerning biochemical activities and a significant reduction in the morphoagronomic characters. The cultivar BAT 477 demonstrated to be drought-adapted presenting more efficient biochemical and morphoagronomic adaptions and the genotype BRS Pontal obtained morphoagronomic values similar to BAT 477, thus it may be classified as moderately tolerant to drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA