Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 12(1): 3263, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059684

RESUMEN

A fundamental question in medical genetics is how the genetic background modifies the phenotypic outcome of mutations. We address this question by focusing on the seam cells, which display stem cell properties in the epidermis of Caenorhabditis elegans. We demonstrate that a putative null mutation in the GATA transcription factor egl-18, which is involved in seam cell fate maintenance, is more tolerated in the CB4856 isolate from Hawaii than the lab reference strain N2 from Bristol. We identify multiple quantitative trait loci (QTLs) underlying the difference in phenotype expressivity between the two isolates. These QTLs reveal cryptic genetic variation that reinforces seam cell fate through potentiating Wnt signalling. Within one QTL region, a single amino acid deletion in the heat shock protein HSP-110 in CB4856 is sufficient to modify Wnt signalling and seam cell development, highlighting that natural variation in conserved heat shock proteins can shape phenotype expressivity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , Células Epidérmicas/fisiología , Factores de Transcripción GATA/genética , Proteínas del Choque Térmico HSP110/genética , Células Madre/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción GATA/metabolismo , Estudios de Asociación Genética , Técnicas Genéticas , Variación Genética , Proteínas del Choque Térmico HSP110/metabolismo , Organismos Hermafroditas , Masculino , Mutación , Sitios de Carácter Cuantitativo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Vía de Señalización Wnt/genética
2.
Sci Rep ; 11(1): 9787, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963222

RESUMEN

Developmental patterning in Caenorhabditis elegans is known to proceed in a highly stereotypical manner, which raises the question of how developmental robustness is achieved despite the inevitable stochastic noise. We focus here on a population of epidermal cells, the seam cells, which show stem cell-like behaviour and divide symmetrically and asymmetrically over post-embryonic development to generate epidermal and neuronal tissues. We have conducted a mutagenesis screen to identify mutants that introduce phenotypic variability in the normally invariant seam cell population. We report here that a null mutation in the fusogen eff-1 increases seam cell number variability. Using time-lapse microscopy and single molecule fluorescence hybridisation, we find that seam cell division and differentiation patterns are mostly unperturbed in eff-1 mutants, indicating that cell fusion is uncoupled from the cell differentiation programme. Nevertheless, seam cell losses due to the inappropriate differentiation of both daughter cells following division, as well as seam cell gains through symmetric divisions towards the seam cell fate were observed at low frequency. We show that these stochastic errors likely arise through accumulation of defects interrupting the continuity of the seam and changing seam cell shape, highlighting the role of tissue homeostasis in suppressing phenotypic variability during development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Epidermis/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Madre/metabolismo , Animales , Fusión Celular , Forma de la Célula , Células Epidérmicas/metabolismo
3.
Genetics ; 214(4): 927-939, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988193

RESUMEN

Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.


Asunto(s)
División Celular Asimétrica , Linaje de la Célula , Variación Genética , Vía de Señalización Wnt , Animales , Caenorhabditis elegans , Células Epiteliales/citología , Células Epiteliales/metabolismo , Respuesta al Choque Térmico , Células Madre/citología , Células Madre/metabolismo
4.
Curr Biol ; 28(4): 640-648.e5, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29398216

RESUMEN

In its natural habitat, the nematode Caenorhabditis elegans encounters a plethora of other organisms, including many that are pathogenic [1, 2]. The study of interactions between C. elegans and various pathogens has contributed to characterizing key mechanisms of innate immunity [2-4]. However, how C. elegans recognizes different pathogens to mount pathogen-specific immune responses remains still largely unknown [3, 5-8]. Expanding the range of known C. elegans-infecting pathogens and characterizing novel pathogen-specific immune responses are key steps toward answering this question. We report here that the oomycete Myzocytiopsis humicola is a natural pathogen of C. elegans, and we describe its infection strategy. We identify a new host immune response to pathogen exposure that involves induction of members of a previously uncharacterized gene family encoding chitinase-like (CHIL) proteins. We demonstrate that this response is highly specific against M. humicola and antagonizes the infection. We propose that CHIL proteins may diminish the ability of the oomycete to infect by hindering pathogen attachment to the host cuticle. This work expands our knowledge of natural eukaryotic pathogens of C. elegans and introduces a new pathosystem to address how animal hosts recognize and respond to oomycete infections.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Oomicetos/fisiología , Animales , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Familia de Multigenes/inmunología
5.
PLoS Biol ; 15(11): e2002429, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29108019

RESUMEN

Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , División Celular , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Células Epidérmicas , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Recuento de Células , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Epidermis/metabolismo , Regulación de la Expresión Génica , Células Madre/metabolismo , Procesos Estocásticos , Factores de Transcripción/genética , Vía de Señalización Wnt
6.
Mol Ecol ; 25(24): 6267, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28035759
7.
Mol Ecol ; 25(10): 2312-24, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26992100

RESUMEN

Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.


Asunto(s)
Bacterias/clasificación , Escarabajos/microbiología , Escarabajos/parasitología , Microbiota , Nematodos/microbiología , Animales , ADN Bacteriano/genética , ADN de Helmintos/genética , Especificidad del Huésped , Los Angeles , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA