Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1160: 67-73, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19416161

RESUMEN

The receptors for relaxin and insulin-like peptide 3 (INSL3) are now well-characterized as the relaxin family peptide (RXFP) receptors RXFP1 and RXFP2, respectively. They are G-protein-coupled receptors (GPCRs) with closest similarity to the glycoprotein hormone receptors, with both containing large ectodomains with 10 leucine-rich repeats (LRRs). Additionally, RXFP1 and RXFP2 are unique in the LGR family in that they contain a low-density lipoprotein class A (LDL-A) module at their N-terminus. Ligand-mediated activation of RXFP1 and RXFP2 is a complex process involving various domains of the receptors. Primary ligand binding occurs via interactions between B-chain residues of the peptides with specific residues in the LRRs of the ectodomain. There is a secondary binding site in the transmembrane exoloops which may interact with the A chain of the peptides. Receptor signaling through cAMP then requires the unique LDL-A module, as receptors without this domain bind ligand normally but do not signal. This is an unconventional mode of activation for a GPCR, and the precise mode of action of the LDL-A module is currently unknown. The specific understanding of the mechanisms underlying ligand-mediated activation of RXFP1 and RXFP2 is crucial in terms of targeting these receptors for future drug development.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/química , Receptores de Péptidos/metabolismo , Sitios de Unión , Humanos , Unión Proteica
2.
Chembiochem ; 9(11): 1816-22, 2008 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-18576448

RESUMEN

Insulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4. Given that the primary function of the INSL5-RXFP4 pair remains unknown, an effective means of producing sufficient quantities of this peptide and its analogues is needed to systematically investigate its structural and biological properties. A combination of solid-phase peptide synthesis methods together with regioselective disulfide bond formation were used to obtain INSL5. Both chains were unusually resistant to standard synthesis protocols and required highly optimized conditions for their acquisition. In particular, the use of a strong tertiary amidine, DBU, as N(alpha)-deprotection base was required for the successful assembly of the B chain; this highlights the need to consider incomplete deprotection rather than acylation as a cause of failed synthesis. Following sequential disulfide bond formation and chain combination, the resulting synthetic INSL5, which was obtained in good overall yield, was shown to possess a similar secondary structure to human relaxin-3 (H3 relaxin). The peptide was able to inhibit cAMP activity in SK-N-MC cells that expressed the human RXFP4 receptor with a similar activity to H3 relaxin. In contrast, it had no activity on the human RXFP3 receptor. Synthetic INSL5 demonstrates equivalent activity to the recombinant-derived peptide, and will be an important tool for the determination of its biological function.


Asunto(s)
Insulina/síntesis química , Insulina/metabolismo , Proteínas/síntesis química , Proteínas/metabolismo , Humanos , Insulina/química , Conformación Proteica , Proteínas/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA