Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Inflammopharmacology ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305407

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder frequently accompanied by neuroinflammation and oxidative stress. The medicine and food homology (MFH) has shown potential for treating neuroinflammation and oxidative stress. This study aimed to provide a safe and efficient therapy for AD based on MFH. In this study, we develop a MFH formula consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN). To evaluate the ameliorative effects of EPRCN on AD-related symptoms, a mouse model of AD was constructed using intraperitoneal injection of scopolamine in ICR mice. Experimental results demonstrated that EPRCN supplement restored behavioral deficits and suppressed neuroinflammation and oxidative stress in the hippocampus of scopolamine-induced mice. An in vitro study was then performed using induction of Aß(25-35) in glial (BV-2 and SW-1783) and neuron (SH-SY5Y) cell lines to examine the improvement mechanism of EPRCN on cognitive deficits. Multi-omics and in vitro studies demonstrated that these changes were driven by the anandamide (AEA)-Trpv1-Nrf2 pathway, which was inhibited by AM404 (an AEA inhibitor), AMG9810 (a Trpv1 inhibitor), and BT (an Nrf2 inhibitor). Consequently, EPRCN is an effective therapy on preventing cognitive deficits in mouse models of AD. In contrast to donepezil, EPRCN exhibits a novel modes action for ameliorating neuroinflammation. The mechanism of EPRCN on preventing cognitive deficits is mediated by improving neuroinflammation and oxidative stress via activating the AEA-Trpv1-Nrf2 pathway.

2.
Radiat Oncol ; 19(1): 120, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272162

RESUMEN

OBJECTIVE: To explore the high-risk factors affecting the prognosis of pT1 - 2N1M0 patients after mastectomy, establish a nomogram prediction model, and screen the radiotherapy benefit population. METHOD: The clinical data of 936 patients with pT1 - 2N1M0 who underwent mastectomy in the fourth hospital of Hebei Medical University from 2010 to 2016 were retrospectively analyzed. There were 583 patients received postmastectomy radiotherapy(PMRT), and 325 patients without PMRT. Group imbalances were mitigated using the propensity score matching (PSM) method, and the log-rank test was employed to compare overall survival (OS) and disease-free survival (DFS) between the cohorts. The efficacy of PMRT across various risk groups was evaluated using a nomogram model. RESULT: The median follow-up period was 98 months, Patients who received PMRT demonstrated significantly improved 5-year and 8-year OS and DFS compared to those who did not (P < 0.001). Multivariate analysis revealed that age, primary tumor site, positive lymph node, stage, and Ki-67 level independently influenced OS, while age, primary tumor site, and stage independently affected DFS. PMRT drastically enhanced OS in the high-risk group (P = 0.001), but did not confer benefits in the low-risk and intermediate risk groups (P = 0.057, P = 0.099). PMRT led to a significant improvement in disease-free survival (DFS) among patients in the intermediate and high-risk groups (P = 0.036, P = 0.001), whereas the low-risk group did not experience a significant benefit (P = 0.475). CONCLUSION: Age ≤ 40 years, tumor located in the inner quadrant or central area, T2 stage, 2-3 lymph nodes metastasis, and Ki67 > 30% were the high-risk factors affecting the prognosis of this cohort of patients. In OS nomogram, patients with a risk score of 149 or higher who received PMRT exhibited improved OS. Similarly, in DFS nomogram, patients with a risk score of 123 or higher who received PMRT demonstrated enhanced DFS.


Asunto(s)
Neoplasias de la Mama , Mastectomía , Nomogramas , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Persona de Mediana Edad , Estudios Retrospectivos , Radioterapia Adyuvante , Adulto , Pronóstico , Anciano , Medición de Riesgo , Tasa de Supervivencia , Estadificación de Neoplasias
3.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273506

RESUMEN

Cotton fiber is the leading natural textile material, and fiber elongation plays an essential role in the formation of cotton yield and quality. Although a number of components in the molecular network controlling cotton fiber elongation have been reported, a lot of players still need to be functionally dissected to understand the regulatory mechanism of fiber elongation comprehensively. In the present study, an R2R3-MYB transcription factor gene, GhMYB201, was characterized and functionally verified via CRISPR/Cas9-mediated gene editing. GhMYB201 was homologous to Arabidopsis AtMYB60, and both coding genes (GhMYB201At and GhMYB201Dt) were preferentially expressed in elongating cotton fibers. Knocking-out of GhMYB201 significantly reduced the rate and duration of fiber elongation, resulting in shorter and coarser mature fibers. It was found that GhMYB201 could bind and activate the transcription of cell wall loosening genes (GhRDLs) and also ß-ketoacyl-CoA synthase genes (GhKCSs) to enhance very-long-chain fatty acid (VLCFA) levels in elongating fibers. Taken together, our data demonstrated that the transcription factor GhMYB201s plays an essential role in promoting fiber elongation via activating genes related to cell wall loosening and VLCFA biosynthesis.


Asunto(s)
Pared Celular , Fibra de Algodón , Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Factores de Transcripción , Pared Celular/metabolismo , Pared Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis
4.
Animals (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123740

RESUMEN

Avian primordial germ cells (PGCs) are essential in avian transgenic research, germplasm conservation, and disease resistance breeding. However, cultured PGCs are prone to fragmentation and apoptosis, regulated at transcriptional and translational levels, with N6-methyladenosine (m6A) being the most common mRNA modification. Resveratrol (RSV) is known for its antioxidant and anti-apoptotic properties, but its effects on PGCs and the underlying mechanisms are not well understood. This study shows that RSV supplementation in cultured PGCs improves cell morphology, significantly enhances total antioxidant capacity (p < 0.01), reduces malondialdehyde levels (p < 0.05), increases anti-apoptotic BCL2 expression, and decreases Caspase-9 expression (p < 0.05). Additionally, RSV upregulates the expression of m6A reader proteins YTHDF1 and YTHDF3 (p < 0.05). m6A methylation sequencing revealed changes in mRNA m6A levels after RSV treatment, identifying 6245 methylation sites, with 1223 unique to the control group and 798 unique to the RSV group. Combined analysis of m6A peaks and mRNA expression identified 65 mRNAs with significantly altered methylation and expression levels. Sixteen candidate genes were selected, and four were randomly chosen for RT-qPCR validation, showing results consistent with the transcriptome data. Notably, FAM129A and SFRP1 are closely related to apoptosis, indicating potential research value. Overall, our study reveals the protective effects and potential mechanisms of RSV on chicken PGCs, providing new insight into its use as a supplement in reproductive stem cell culture.

5.
Vet Sci ; 11(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39195820

RESUMEN

The lion-head goose is the only large goose species in China, and it is one of the largest goose species in the world. Lion-head geese have a strong tolerance for massive energy intake and show a priority of fat accumulation in liver tissue through special feeding. Therefore, the aim of this study was to investigate the impact of high feed intake compared to normal feeding conditions on the transcriptome changes associated with fatty liver development in lion-head geese. In this study, 20 healthy adult lion-head geese were randomly assigned to a control group (CONTROL, n = 10) and high-intake-fed group (CASE, n = 10). After 38 d of treatment, all geese were sacrificed, and liver samples were collected. Three geese were randomly selected from the CONTROL and CASE groups, respectively, to perform whole-transcriptome analysis to analyze the key regulatory genes. We identified 716 differentially expressed mRNAs, 145 differentially expressed circRNAs, and 39 differentially expressed lncRNAs, including upregulated and downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in molecular function. The node degree analysis and centrality metrics of the mRNA-lncRNA-circRNA triple regulatory network indicate the presence of crucial functional nodes in the network. We identified differentially expressed genes, including HSPB9, Pgk1, Hsp70, ME2, malic enzyme, HSP90, FADS1, transferrin, FABP, PKM2, Serpin2, and PKS, and we additionally confirmed the accuracy of sequencing at the RNA level. In this study, we studied for the first time the important differential genes that regulate fatty liver in high-intake feeding of the lion-head goose. In summary, these differentially expressed genes may play important roles in fatty liver development in the lion-head goose, and the functions and mechanisms should be investigated in future studies.

6.
Nat Commun ; 15(1): 5642, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969643

RESUMEN

The combination between macroscopic structure designs and microscopic material designs offers tremendous possibilities for the development of advanced electromagnetic wave (EMW) absorbers. Herein, we propose a metamaterial design to address persistent challenges in this field, including narrow bandwidth, low-frequency bottlenecks, and, particularly, the urgent issue of robustness (i.e., oblique, and polarized incidence). Our absorber features a semiconductive metal-organic framework/iron 2D/2D assembly (CuHT-FCIP) with abundant crystal/crystal heterojunctions and strong magneto-electric coupling networks. This design achieves remarkable EMW absorption across a broad range (2 to 40 GHz) at a thickness of just 9.3 mm. Notably, it maintains stable performance against oblique incidence (within 75°) and polarizations (both transverse electric and transverse magnetic). Furthermore, the absorber demonstrates high specific compressive strength (201.01 MPa·cm3·g-1) and low density (0.89 g·cm-3). This advancement holds promise for developing robust EMW absorbers with superior performance.

7.
Microorganisms ; 12(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065263

RESUMEN

Subgroup J avian leukosis virus (ALV-J) is a major pathogen in poultry, causing substantial economic losses to the poultry industry worldwide. Exosomal small RNAs derived from virus-infected cells or biological fluids can serve as viral transmission vectors. However, the role and mechanism of exosomal miRNA in ALV-J infection are unclear. In this study, we demonstrated that exosomal microRNA-7-25207 (miR-7-25207) could increase the titers of ALV-J. Exosomes isolated from ALV-J-infected DF-1 cells (Exo-ALV-J) contained partial viral proteins from ALV-J and could transmit the infection to uninfected DF-1 cells, leading to productive infection. Additionally, the RNA expression profile of exosomes was altered following ALV-J infection. miRNA analysis revealed that the expression of exosomal miR-7-25207 increased. Overexpression of miR-7-25207 significantly increased the titers of ALV-J in transfected cells. Furthermore, miR-7-25207 directly suppressed the expression of Akt and PRC1. Akt, in turn, directly inhibited CyclinQ1 expression, while PRC1 directly interfered with YAF2 expression. In conclusion, ALV-J infection activates the expression of miR-7-25207, which is subsequently delivered via exosomes to uninfected cells, increasing ALV-J titers by targeting Akt-CyclinQ1 and PRC1-YAF2 dual pathways. These findings suggest that exosomal miR-7-25207 may serve as a potential biomarker for clinical parameters in ALV-J infection.

8.
Front Vet Sci ; 11: 1373914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948676

RESUMEN

Purpose: This study aimed to evaluate the feasibility of establishing an arterial acute mesenteric ischemia (AMI) model in canines using transcatheter autologous thrombus administration. Materials and methods: Ten canines were divided into the experimental group (Group A, n = 5) and the sham group (Group B, n = 5). The canines in Group A received thrombus administration to the superior mesenteric artery (SMA) through a guiding catheter, while the canines in Group B received normal saline administration. Blood samples were collected and tested at baseline and 2 h after modelling. Canines in Group A underwent manual thromboaspiration after blood and intestine samples were collected. Ischaemic grades of intestinal mucosa were evaluated under light microscopes. Results: The AMI models were successfully conducted in all canines without procedure-related vessel injury or death. At the 2-h follow-up, the high-sensitivity C-reactive protein and D-dimer in Group A were significantly higher than in Group B (5.72 ± 1.8 mg/L vs. 2.82 ± 1.5 mg/L, p = 0.024; 2.25 ± 0.8 µg/mL vs. 0.27 ± 0.10 µg/mL, p = 0.005; respectively). The mean histopathologic intestinal ischaemic grade in Group A was significantly higher than in Group B (2.4 ± 0.5 vs. 0.8 ± 0.4, p < 0.001). After a median of 2 times of thromboaspiration, 80% (4/5) of the canines achieved complete SMA revascularisation. Conclusion: This experimental study demonstrated that establishing an arterial model in canines using endovascular approaches was feasible. The present model may play an important role in the investigation of endovascular techniques in the treatment of arterial AMI.

9.
Small ; : e2403903, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953301

RESUMEN

Asymmetric electronic environments based on microscopic-scale perspective have injected infinite vitality in understanding the intrinsic mechanism of polarization loss for electromagnetic (EM) wave absorption, but still exists a significant challenge. Herein, Zn single-atoms (SAs), structural defects, and Co nanoclusters are simultaneously implanted into bimetallic metal-organic framework derivatives via the two-step dual coordination-pyrolysis process. Theoretical simulations and experimental results reveal that the electronic coupling interactions between Zn SAs and structural defects delocalize the symmetric electronic environments and generate additional dipole polarization without sacrificing conduction loss owing to the compensation of carbon nanotubes. Moreover, Co nanoclusters with large nanocurvatures induce a strong interfacial electric field, activate the superiority of heterointerfaces and promote interfacial polarization. Benefiting from the aforementioned merits, the resultant derivatives deliver an optimal reflection loss of -58.9 dB and the effective absorption bandwidth is 5.2 GHz. These findings provide an innovative insight into clarifying the microscopic loss mechanism from the asymmetric electron environments viewpoint and inspire the generalized electronic modulation engineering in optimizing EM wave absorption.

10.
Heliyon ; 10(11): e32110, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867944

RESUMEN

Objectives: To develop a novel and accurate nomogram to predict survival without amputation in patients with acute lower limb ischemia (ALLI) during the first year following endovascular therapy. Methods: Patients with ALLI who underwent endovascular therapy in our department between January 2012 and September 2020 were screened and included in the research. The included patients were randomly divided into a training and validation cohorts, respectively. Univariate and multivariate analyses were used in the training cohort to identify independent risk factors for amputation-free survival (AFS). A nomogram was then developed according to the identified independent risk factors. The nomogram was then validated in the validation cohort. Results: 415 Chinese patients with 417 affected limbs were included in this study. Among these patients, 311 patients were classified into the training cohort and 104 patients were assigned to the validation cohort. Most patients were men (n = 240) and the average age of patients was 71.43 (standard deviation 8.86) years old. After the univariate and multivariate analyses, advanced age (p < 0.001), history of smoking (p < 0.001), atrial fibrillation (p < 0.001), and insufficient outflow (p = 0.001) were revealed as independent risk factors for AFS during the first year. The nomogram yielded AUROC values of 0.912 (95 % confidence interval [CI]: 0.873-0.950) and 0.889 (95 % CI: 0.812-0.967) in the training and validation cohorts, respectively. Conclusion: Advanced age, history of smoking, atrial fibrillation, and insufficient outflow were independent negative predictors for AFS in ALLI patients treated by endovascular therapy. The novel nomogram offered an accurate prediction of AFS in ALLI patients.

11.
Adv Sci (Weinh) ; 11(30): e2309785, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889299

RESUMEN

Fusarium wilt (FW) is widespread in global cotton production, but the mechanism underlying FW resistance in superior-fiber-quality Sea Island cotton is unclear. This study reveals that FW resistance has been the target of genetic improvement of Sea Island cotton in China since the 2010s. The key nonsynonymous single nucleotide polymorphism (SNP, T/C) of gene Gbar_D03G001670 encoding protein phosphatase 2C 80 (PP2C80) results in an amino acid shift (L/S), which is significantly associated with FW resistance of Sea Island cotton. Silencing GbPP2C80 increases FW resistance in Sea Island cotton, whereas overexpressing GbPP2C80 reduces FW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 exist synergistically in Sea Island cotton accessions with haplotype forms "susceptible-susceptible" (TA) and "resistant-resistant" (CC), and interact with each other. CRISPR/Cas9-mediated knockout of GbWAKL14 enhances FW and Verticillium wilt (VW) resistance in upland cotton and overexpression of GbWAKL14 and GbPP2C80 weakens FW and VW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 respond to FW and VW by modulating reactive oxygen species (ROS) content via affecting MPK3 expression. In summary, two tandem genes on chromosome D03, GbPP2C80, and GbWAKL14, functions as cooperative negative regulators in cotton wilt disease defense, providing novel genetic resources and molecular markers for the development of resistant cotton cultivars.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Gossypium , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Verticillium , Gossypium/genética , Gossypium/microbiología , Gossypium/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Fusarium/genética , Resistencia a la Enfermedad/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , China , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
12.
Poult Sci ; 103(8): 103898, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936216

RESUMEN

Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Diferenciación Celular , Pollos , Exosomas , MicroARNs , ARN Circular , Animales , Virus de la Leucosis Aviar/fisiología , Exosomas/metabolismo , Exosomas/virología , Exosomas/genética , ARN Circular/genética , ARN Circular/metabolismo , Leucosis Aviar/virología , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/genética , Células Madre Embrionarias/virología , Células Madre Embrionarias/fisiología , Embrión de Pollo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
13.
Hepatobiliary Surg Nutr ; 13(3): 412-424, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38911192

RESUMEN

Background: The application of Pringle maneuver (PM) during hepatectomy reduces intraoperative blood loss and the need for perioperative transfusion, but its effect on long-term recurrence and survival for patients with hepatocellular carcinoma (HCC) remains controversial. We sought to determine the association between the application of PM and post-hepatectomy oncologic outcomes for patients with HCC. Methods: Patients who underwent curative hepatectomy for HCC at 9 Chinese hospitals from January 2010 to December 2018 were identified. Using two propensity score methods [propensity score matching (PSM) and inverse probability of treatment weight (IPTW)], cumulative recurrence rate and cancer-specific mortality (CSM) were compared between the patients in the PM and non-PM groups. Multivariate competing-risks regression models were performed to adjust for the effect of non-cancer-specific mortality and other prognostic risk factors. Results: Of the 2,798 included patients, 2,404 and 394 did and did not adopt PM (the PM and non-PM groups), respectively. The rates of intraoperative blood transfusion, postoperative 30-day mortality and morbidity were comparable between the two groups (all P>0.05). In the PSM cohort by the 1:3 ratio, compared to 382 patients in the non-PM group, 1,146 patients in the PM group also had the higher cumulative 5-year recurrence rate and CSM (63.9% and 39.1% vs. 55.3% and 31.6%, both P<0.05). Similar results were also yielded in the entire cohort and the IPTW cohort. Multivariate competing-risks regression analyses demonstrated that no application of the PM was independently associated with lower recurrence rate and CSM based on various analytical cohorts [hazard ratio (HR), 0.82 and 0.77 in the adjusted entire cohort, HR 0.80 and 0.73 in the PSM cohort, and HR 0.80 and 0.76 in the IPTW cohort, respectively]. Conclusions: The findings suggested that no application of PM during hepatectomy for patients with HCC reduced the risk of postoperative recurrence and cancer-specific death by approximately 20-25%.

14.
Animals (Basel) ; 14(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38929436

RESUMEN

The current study aimed to provide a precise assessment of the genetic parameters associated with growth and white spot syndrome virus (WSSV) resistance traits in Pacific white shrimp (Litopenaeus vannamei). This was achieved through a controlled WSSV challenge assay and the analysis of phenotypic values of five traits: body weight (BW), overall length (OL), body length (BL), tail length (TL), and survival hour post-infection (HPI). The analysis included test data from a total of 1017 individuals belonging to 20 families, of which 293 individuals underwent whole-genome resequencing, resulting in 18,137,179 high-quality SNP loci being obtained. Three methods, including pedigree-based best linear unbiased prediction (pBLUP), genomic best linear unbiased prediction (GBLUP), and single-step genomic BLUP (ssGBLUP) were utilized. Compared to the pBLUP model, the heritability of growth-related traits obtained from GBLUP and ssGBLUP was lower, whereas the heritability of WSSV resistance was higher. Both the GBLUP and ssGBLUP models significantly enhanced prediction accuracy. Specifically, the GBLUP model improved the prediction accuracy of BW, OL, BL, TL, and HPI by 4.77%, 21.93%, 19.73%, 19.34%, and 63.44%, respectively. Similarly, the ssGBLUP model improved prediction accuracy by 10.07%, 25.44%, 25.72%, 19.34%, and 122.58%, respectively. The WSSV resistance trait demonstrated the most substantial enhancement using both genomic prediction models, followed by body size traits (e.g., OL, BL, and TL), with BW showing the least improvement. Furthermore, the choice of models minimally impacted the assessment of genetic and phenotypic correlations. Genetic correlations among growth traits ranged from 0.767 to 0.999 across models, indicating high levels of positive correlations. Genetic correlations between growth and WSSV resistance traits ranged from (-0.198) to (-0.019), indicating low levels of negative correlations. This study assured significant advantages of the GBLUP and ssGBLUP models over the pBLUP model in the genetic parameter estimation of growth and WSSV resistance in L. vannamei, providing a foundation for further breeding programs.

15.
Angew Chem Int Ed Engl ; 63(29): e202404978, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697945

RESUMEN

Integrating aggregation-induced emission (AIE) into thermally activated delayed fluorescence (TADF) emitters holds great promise for the advancement of highly efficient organic light emitting diodes (OLEDs). Despite recent advancements, a thorough comprehension of the underlying mechanisms remains imperative for the practical application of such materials. In this work, we introduce a novel approach aimed at modulating the TADF process by manipulating dynamic processes in excited states through aggregation effect. Our findings reveal that aggregation not only enhances both prompt and delayed fluorescence simultaneously but also imposes constraints on molecular reorientation. This constraint reinforces spin-orbit coupling and reduces the energy gap between singlets and triplets. These insights deepen our understanding of the fundamental mechanisms governing the aggregation effect on TADF materials and provide valuable guidance for the design of high-efficiency photoluminescent materials.

16.
Heliyon ; 10(9): e30688, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756560

RESUMEN

In this study, the Ni/NiO catalyst was demonstrated to enhance the hydrogen storage performance of MgH2. The dehydrogenation of MgH2+10 wt% Ni/NiO started at approximately 180 °C, achieving 5.83 wt% of dehydrogenation within 10 min at 300 °C. Completely dehydrogenated, MgH2 began to rehydrogenate at about 50 °C, absorbing about 4.56 wt% of hydrogen in 10 min at 150 °C. In addition, the activation energies of dehydrogenation and rehydrogenation of MgH2+10 wt% Ni/NiO were 87.21 and 34.84 kJ/mol. During the dehydrogenation/rehydrogenation cycle, Mg2Ni/Mg2NiH4 could promote hydrogen diffusion, thus enhancing the hydrogen storage performance of Mg/MgH2.

17.
Chem Sci ; 15(18): 6906-6915, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725488

RESUMEN

Vibrational coherence has attracted considerable research interests because of its potential functions in light harvesting systems. Although positive signs of vibrational coherence in metal nanoclusters have been observed, the underlying mechanism remains to be verified. Here, we demonstrate that robust vibrational coherence with a lifetime of 1 ps can be clearly identified in Ag44(SR)30 core-shell nanoclusters, in which an icosahedral Ag12 core is well protected by a dodecahedral Ag20 cage. Ultrafast spectroscopy reveals that two vibrational modes at around 2.4 THz and 1.6 THz, corresponding to the breathing mode and quadrupolar-like mode of the icosahedral Ag12 core, respectively, are responsible for the generation of vibrational coherence. In addition, the vibrational coherence of Ag44 has an additional high frequency mode (2.4 THz) when compared with that of Ag29, in which there is only one low frequency vibration mode (1.6 THz), and the relatively faster dephasing in two-layer Ag29 relative to that in Ag44 further supports the fact that the robust vibrational coherence in Ag44 is ascribed to its unique matryoshka-like core-shell structure. Our findings not only present unambiguous experimental evidence for a multi-layer core-shell structure protected vibrational coherence under ambient conditions but also offers a practical strategy for the design of highly efficient quantum optoelectronic devices.

18.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732180

RESUMEN

The Pacific white shrimp, Penaeus vannamei, is highly susceptible to white spot syndrome virus (WSSV). Our study explored the transcriptomic responses of P. vannamei from resistant and susceptible families, uncovering distinct expression patterns after WSSV infection. The analysis revealed a higher number of differentially expressed genes (DEGs) in the susceptible family following WSSV infection compared to the resistant family, when both were evaluated against their respective control groups, indicating that the host resistance of the family line influences the transcriptome. The results also showed that subsequent to an identical duration following WSSV infection, there were more DEGs in P. vannamei with a high viral load than in those with a low viral load. To identify common transcriptomic responses, we profiled DEGs across families at 96 and 228 h post-infection (hpi). The analysis yielded 64 up-regulated and 37 down-regulated DEGs at 96 hpi, with 33 up-regulated and 34 down-regulated DEGs at 228 hpi, showcasing the dynamics of the transcriptomic response over time. Real-time RT-PCR assays confirmed significant DEG expression changes post-infection. Our results offer new insights into shrimp's molecular defense mechanisms against WSSV.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Penaeidae , Transcriptoma , Virus del Síndrome de la Mancha Blanca 1 , Animales , Penaeidae/virología , Penaeidae/genética , Penaeidae/inmunología , Virus del Síndrome de la Mancha Blanca 1/genética , Perfilación de la Expresión Génica/métodos , Resistencia a la Enfermedad/genética , Carga Viral , Regulación de la Expresión Génica
19.
Front Psychiatry ; 15: 1398669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736623

RESUMEN

Objective: This study used latent profile analysis to explore the level of depression among US adults with obstructive sleep apnea hypopnea syndrome (OSAHS) symptoms and to identify different latent categories of depression to gain insight into the characteristic differences between these categories. Methods: The data of this study were obtained from the National Health and Nutrition Examination Survey (NHANES) database, and the subjects with OSAHS symptoms were aged 18 years and older. The latent profile analysis (LPA) method was used to fit the latent depression categories in subjects with OSAHS symptoms. The chi-square test, rank sum test, and binary logistic regression were used to analyze the influencing factors of depression subgroups in subjects with OSAHS symptoms. Results: Three latent profiles were identified: low-level (83.7%), moderate-level (14.5%) and high-level (1.8%) depression. The scores of 9 items in the high-level depression group were higher than those in the other two groups. Among them, item 4 "feeling tired or lack of energy" had the highest score in all categories. Conclusion: Depression in subjects with OSAHS symptoms can be divided into low-level, moderate-level and high-level depression. There are significant differences among different levels of depression in gender, marital status, PIR, BMI, smoking, general health condition, sleep duration and OSAHS symptom severity.

20.
Chem Bio Eng ; 1(3): 264-273, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38689655

RESUMEN

Metallic structures with hierarchical open pores that span several orders of magnitude are ideal candidates for various catalyst applications. However, porous metal materials prepared using alloy/dealloy methods still struggle to achieve continuous pore distribution across a broad size range. Herein, we report a printable copper (Cu)/iron (Fe) composite ink that produces a hierarchical porous Cu material with pores spanning over 4 orders of magnitude. The manufacturing process involves four steps: 3D-printing, annealing, dealloying, and reannealing. Because of the unique annealing process, the resulting hierarchical pore surface becomes coated with a layer of Cu-Fe alloy. This feature imparts remarkable catalytic ability and versatile functionality within fixed bed reactors for 4-nitrophenol (4-NP) reduction and Friedländer cyclization. Specifically, for 4-NP reduction, the porous Cu catalyst demonstrates an excellent reaction rate constant (kapp = 86.5 × 10-3 s-1) and a wide adaptability of the substrate (up to 1.26 mM), whilst for Friedländer cyclization, a conversion over 95% within a retention time of only 20 min can be achieved by metal-organic-framework-decorated porous Cu catalyst. The utilization of dual metallic particles as printable inks offers valuable insights for fabricating hierarchical porous metallic structures for applications, such as advanced fixed-bed catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA