Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto principal
Asunto de la revista
Intervalo de año de publicación
1.
STAR Protoc ; 5(1): 102918, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412103

RESUMEN

Upcycling plastics presents an opportunity not only to reduce plastic waste, but also to provide an alternative carbon source to fossil fuels. Herein, we present a protocol to upcycle plastics with resin codes 2-7 using a commercially available base-metal photocatalyst. We first conducted batch reactions, followed by a continuous, segmented flow system for gram-scale upcycling into value-added platform chemicals. This protocol, employing tandem carbon-hydrogen bond oxidation/carbon-carbon bond cleavage reactions, can be useful for photocatalytically transforming plastics at ambient conditions. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.


Asunto(s)
Carbono , Enlace de Hidrógeno
2.
Angew Chem Int Ed Engl ; 63(14): e202319216, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337143

RESUMEN

The synthesis of hydrogen peroxide through artificial photosynthesis is a green and promising technology with advantages in sustainability, economy and safety. However, superoxide radical (⋅O2 -), an important intermediate in photocatalytic oxygen reduction to H2O2 production, has strong oxidizing properties that potentially destabilize the catalyst. Therefore, avoiding the accumulation of ⋅O2 - for its rapid conversion to H2O2 is of paramount significance in improving catalyst stability and H2O2 yield. In this work, a strategy was developed to utilize protonated groups for the rapid depletion of converted ⋅O2 -, thereby the efficiency of photocatalytic synthesis of H2O2 from CN was successfully enhanced by 47-fold. The experimental findings demonstrated that polydopamine not only improved carrier separation efficiency, and more importantly, provided the adsorption reduction active site for ⋅O2 - for efficient H2O2 production. This work offers a versatile approach for synthesizing efficient and stable photocatalysts.

3.
Adv Mater ; 36(18): e2312868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241728

RESUMEN

The intelligent construction of non-noble metal materials that exhibit reversible oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with bifunctional electrocatalytic performance is greatly coveted in the realm of zinc-air batteries (ZABs). Herein, a crafted structure-amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived N, S, P co-doped carbon sphere (A-MnO2/NSPC) is designed using a self-doped pyrolysis coupled with an in situ encapsulation strategy. The customized A-MnO2/NSPC-2 demonstrates a superior bifunctional electrocatalytic performance, confirmed by a small ΔE index of 0.64 V for ORR/OER. Experimental investigations, along with density functional theory calculations validate that predesigned amorphous MnO2 surface defects and abundant heteroatom catalytic active sites collectively enhance the oxygen electrocatalytic performance. Impressively, the A-MnO2/NSPC-based rechargeable liquid ZABs show a large open-circuit potential of 1.54 V, an ultrahigh peak power density of 181 mW cm-2, an enormous capacity of 816 mAh g-1, and a remarkable stability for more than 1720 discharging/charging cycles. Additionally, the assembled flexible all-solid-state ZABs also demonstrate outstanding cycle stability, surpassing 140 discharging/charging cycles. Therefore, this highly operable synthetic strategy offers substantial understanding in the development of magnificent bifunctional electrocatalysts for various sustainable energy conversions and beyond.

4.
Langmuir ; 40(3): 1848-1857, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38183664

RESUMEN

Elaborating the specific reactive oxygen species (ROS) involved in the photocatalytic degradation of atrazine (ATZ) is of great significance for elucidating the underlying mechanism. This study provided conclusive evidence that hydroxyl radicals (·OH) were the primary ROS responsible for the efficient photocatalytic degradation of ATZ, thereby questioning the reliability of widely adopted radical quenching techniques in discerning authentic ROS species. As an illustration, oxygen-modified g-C3N4 (OCN) was prepared to counteract the limitations of pristine g-C3N4 (CN). Comparative assessments between CN and OCN revealed a remarkable 10.44-fold improvement in the photocatalytic degradation of ATZ by OCN. This enhancement was ascribed to the increased content of C-O functional groups on the surface of the OCN, which facilitated the conversion of superoxide radicals (·O2-) into hydrogen peroxide (H2O2), subsequently leading to the generation of ·OH. The increased production of ·OH contributed to the efficient dealkylation, dechlorination, and hydroxylation of ATZ. Furthermore, toxicity assessments revealed a significant reduction in ATZ toxicity following its photocatalytic degradation by OCN. This study sheds light on the intricate interconversion of ROS and offers valuable mechanistic insights into the photocatalytic degradation of ATZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA