Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Mini Rev Med Chem ; 5(2): 173-81, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15720287

RESUMEN

Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major facilitator superfamily of secondary transporters or ATP-dependent primary transporters belonging to the ATP-binding cassette superfamily of transport proteins. Here we summarize the existing data on these MDRs and discuss recent observations that suggest the use of new strategies in the ongoing battle against drug-resistant microbial pathogens.


Asunto(s)
Bacterias/metabolismo , Ácido Láctico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/genética , Farmacorresistencia Bacteriana Múltiple/genética , Lactobacillus/metabolismo , Lactococcus/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Preparaciones Farmacéuticas/metabolismo
2.
Cell Mol Life Sci ; 61(19-20): 2646-57, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15526169

RESUMEN

LmrP from Lactococcus lactis is a 45-kDa membrane protein that confers resistance to a wide variety of lipophilic compounds by acting as a proton motive force-driven efflux pump. This study shows that both the proton motive force and ligand interaction alter the accessibility of cytosolic tryptophan residues to a hydrophilic quencher. The proton motive force mediates an increase of LmrP accessibility toward the external medium and results in higher drug binding. Residues Asp128 and Asp68, from cytosolic loops, are involved in the proton motive force-mediated accessibility change. Ligand binding does not modify the protein accessibility, but the proton motive force-mediated restructuring is prerequisite for a subsequent accessibility change mediated by ligand binding. Asp142 cooperates with other membrane-embedded carboxylic residues to promote a conformational change that increases LmrP accessibility toward the hydrophilic quencher. This drug binding-mediated reorganization may be related to the transition between the high- and low-affinity drug-binding sites and is crucial for drug release in the extracellular medium.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de Transporte de Membrana/fisiología , Acrilamida/farmacología , Ácido Aspártico/química , Proteínas Bacterianas/química , Bencimidazoles/farmacología , Transporte Biológico , Membrana Celular/metabolismo , Citosol/química , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos , Concentración de Iones de Hidrógeno , Lactococcus lactis/metabolismo , Ligandos , Liposomas/metabolismo , Proteínas de Transporte de Membrana/química , Unión Proteica , Estructura Terciaria de Proteína , Proteolípidos/química , Protones , Sefarosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Tetraciclina/química , Factores de Tiempo , Triptófano/química
3.
Mol Biol Rep ; 29(1-2): 107-12, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12241038

RESUMEN

A numerical model of the LmrA multi-drug transport system of Lactococcus lactis is used to explore the possibility of distinguishing experimentally between two putative transport mechanisms, i.e., the vacuum-cleaner and the flippase mechanisms. This comparative model also serves as an example of numerical simulation with the scripting language Python and its scientific add-on Scipy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Modelos Biológicos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Simulación por Computador , Resistencia a Múltiples Medicamentos , Matemática , Programas Informáticos
4.
Extremophiles ; 5(5): 285-94, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11699642

RESUMEN

The ion and particularly the proton and sodium ion permeabilities of cytoplasmic membranes play crucial roles in the bioenergetics of microorganisms. The proton and sodium permeabilities of membranes increase with temperature. Psychrophilic and mesophilic bacteria and mesophilic, (hyper)thermophilic, and halophilic archaea are capable of adjusting the lipid composition of their membranes in such a way that the proton permeability at the respective growth temperature remains constant (homeoproton permeability). Thermophilic bacteria are an exception. They rely on the less permeable sodium ions to generate a sodium motive force, which is subsequently used to drive energy-requiring membrane-bound processes. Transport of solutes across bacterial and archaeal membranes is mainly catalyzed by primary ATP-driven transport systems or by proton- or sodium-motive-force-driven secondary transport systems. Unlike most bacteria, hyperthermophilic bacteria and archaea prefer primary uptake systems. Several high-affinity ATP-binding cassette (ABC) transporters for sugars from hyperthermophiles have been identified and characterized. The activities of these ABC transporters allow these organisms to thrive in their nutrient-poor environments.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Metabolismo Energético , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico Activo , Proteínas Portadoras/metabolismo , Permeabilidad de la Membrana Celular , Ambiente , Concentración de Iones de Hidrógeno , Temperatura
5.
Biochemistry ; 40(39): 11876-86, 2001 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-11570888

RESUMEN

Bacterial LmrA, an integral membrane protein of Lactococcus lactis, confers multidrug resistance by mediating active extrusion of a wide variety of structurally unrelated compounds. Similar to its eucaryotic homologue P-gp, this protein is a member of the ATP-binding cassette (ABC) superfamily. Different predictive models, based on hydropathy profiles, have been proposed to describe the structure of the ABC transporters in general and of LmrA in particular. We used polarized attenuated total reflection infrared spectroscopy, combined with limited proteolysis, to investigate the secondary structure and the orientation of the transmembrane segments of LmrA. We bring the first experimental evidence that the membrane-embedded domain of LmrA is composed of transmembrane-oriented alpha-helices. Furthermore, a new approach was developed in order to provide information about membrane domain dynamics. Monitoring the infrared linear dichroism spectra in the course of (1)H/(2)H exchange allowed to focus the recording of exchange rates on the membrane-embedded region of the protein only. This approach revealed an unusual structural dynamics, indicating high flexibility in this antibiotic binding and transport region.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Hidrógeno , Hidrólisis , Relación Estructura-Actividad
6.
Trends Biochem Sci ; 26(9): 534-9, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11551789

RESUMEN

Glutamate transporters in the mammalian central nervous system have a unique position among secondary transport proteins as they exhibit glutamate-gated chloride-channel activity in addition to glutamate-transport activity. In this article, the available data on the structure of the glutamate transporters are compared with high-resolution crystal structures of channel proteins. In addition, binding-site properties of glutamate transporters, and the ligand-binding site of an ionotropic glutamate receptor of which the crystal structure is known, are compared. Possible structural solutions for the combination of channel and transporter activity in one membrane protein are proposed.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas , Sistema de Transporte de Aminoácidos X-AG , Sitios de Unión , Cationes , Canales de Cloruro/química , Canales Iónicos/química , Canales de Potasio/química
7.
Arch Microbiol ; 176(1-2): 96-105, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11479708

RESUMEN

Solute transport in Saccharomyces cerevisiae can be regulated through mechanisms such as trans-inhibition and/or catabolite inactivation by nitrogen or carbon sources. Studies in hybrid membranes of S. cerevisiae suggested that the maltose transport system Mal61p is fully reversible and capable of catalyzing both influx and efflux transport. This conclusion has now been confirmed by studies in a S. cerevisiae strain lacking the maltase enzyme. Whole cells of this strain, wherein the orientation of the maltose transporter is fully preserved, catalyze fully reversible maltose transport. Catabolite inactivation of the maltose transporter Mal61p was studied in the presence and absence of maltose metabolism and by the use of different glucose analogues. Catabolite inactivation of Mal61p could be triggered by maltose, provided the sugar was metabolized, and the rate of inactivation correlated with the rate of maltose influx. We also show that 2-deoxyglucose, unlike 6-deoxyglucose, can trigger catabolite inactivation of the maltose transporter. This suggests a role for early glycolytic intermediates in catabolite inactivation of the Mal61 protein. However, there was no correlation between intracellular glucose-6-phosphate or ATP levels and the rate of catabolite inactivation of Mal61p. On the basis of their identification in cell extracts, we speculate that (dideoxy)-trehalose and/or (deoxy)-trehalose-6-phosphate trigger catabolite inactivation of the maltose transporter.


Asunto(s)
Maltosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores , Adenosina Trifosfato/metabolismo , Transporte Biológico/efectos de los fármacos , Glucosa/análogos & derivados , Glucosa/metabolismo , Glucosa/farmacología , Glucosa-6-Fosfato/metabolismo , Maltosa/farmacología , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
8.
J Bacteriol ; 183(17): 4979-84, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11489849

RESUMEN

The hyperthermophilic archaeon Pyrococcus furiosus can utilize different beta-glucosides, like cellobiose and laminarin. Cellobiose uptake occurs with high affinity (K(m) = 175 nM) and involves an inducible binding protein-dependent transport system. The cellobiose binding protein (CbtA) was purified from P. furiosus membranes to homogeneity as a 70-kDa glycoprotein. CbtA not only binds cellobiose but also cellotriose, cellotetraose, cellopentaose, laminaribiose, laminaritriose, and sophorose. The cbtA gene was cloned and functionally expressed in Escherichia coli. cbtA belongs to a gene cluster that encodes a transporter that belongs to the Opp family of ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Transportadoras de Casetes de Unión a ATP/metabolismo , Celobiosa/metabolismo , Pyrococcus/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Cinética , Peso Molecular
9.
J Bacteriol ; 183(18): 5371-5, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11514522

RESUMEN

Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Ácidos/farmacología , Cerveza/microbiología , Microbiología de Alimentos , Lactobacillus/efectos de los fármacos , Rosales/química , Transportadoras de Casetes de Unión a ATP/genética , Ácidos/metabolismo , Bencimidazoles/metabolismo , Farmacorresistencia Microbiana/genética , Resistencia a Múltiples Medicamentos/genética , Etidio/metabolismo , Genes Bacterianos , Lactobacillus/genética , Lactobacillus/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Liposomas/metabolismo
10.
Arch Microbiol ; 175(5): 334-43, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11409543

RESUMEN

The genes encoding a binding-protein-dependent ABC transporter for dipeptides (Dpp) were identified in Lactococcus lactis subsp. cremoris MG1363. Two (dppA and dppP) of the six ORFs (dppAdppPBCDF) encode proteins that are homologous to peptide- and pheromone-binding proteins. The dppP gene contains a chain-terminating nonsense mutation and a frame-shift that may impair its function. The functionality of the dpp genes was proven by the construction of disruption mutants via homologous recombination. The expression of DppA and various other components of the proteolytic system was studied in synthetic and peptide-rich media and by using isogenic peptide-transport mutants that are defective in one or more systems (Opp, DtpT, and/or Dpp). In peptide-rich medium, DppA was maximally expressed in mutants lacking Opp and DtpT. DppA expression also depended on the growth phase and was repressed by tri-leucine and tri-valine. The effect of tri-leucine on DppA expression was abolished when leucine was present in the medium. Importantly, the Dpp system also regulated the expression of other components of the proteolytic system. This regulation was achieved via the internalization of di-valine, which caused a 30-50% inhibition in the expression of the proteinase PrtP and the peptidases PepN and PepC. Similar to the regulation of DppA, the repressing effect was no longer observed when high concentrations of valine were present. The intricate regulation of the components of the proteolytic system by peptides and amino acids is discussed in the light of the new and published data.


Asunto(s)
Proteínas Portadoras/metabolismo , Dipéptidos/metabolismo , Proteínas de Escherichia coli , Genes Bacterianos/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de Unión Periplasmáticas , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Endopeptidasas/metabolismo , Expresión Génica , Lactococcus lactis/crecimiento & desarrollo , Datos de Secuencia Molecular , Oligopéptidos/metabolismo , Transporte de Proteínas , Especificidad por Sustrato
11.
Res Microbiol ; 152(3-4): 365-74, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11421284

RESUMEN

The elevated expression of ATP binding cassette (ABC) multidrug transporters in multidrug-resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. This review summarizes current insights into the mechanism(s) by which ATP hydrolysis is coupled to drug transport in bacterial LmrA and its human homolog P-glycoprotein. In addition, the relevance of these insights for other ABC transporters will be discussed.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Farmacorresistencia Microbiana , Resistencia a Múltiples Medicamentos , Humanos , Relación Estructura-Actividad
12.
J Mol Microbiol Biotechnol ; 3(2): 185-92, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11321572

RESUMEN

ATP-binding cassette multidrug transporters are probably present in all living cells, and are able to export a variety of structurally unrelated compounds at the expense of ATP hydrolysis. The elevated expression of these proteins in multidrug resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. Insights into the structural elements in drug molecules and transport proteins that are required for this interaction are now beginning to emerge. However, much remains to be learned about the nature and number of drug binding sites in the transporters, and the mechanism(s) by which ATP hydrolysis is coupled to changes in affinity and/or accessibility of drug binding sites. This review summarizes recent advances in answering these questions for the human multidrug resistance P-glycoprotein and its prokaryotic homolog LmrA. The relevance of these findings for other ATP-binding cassette transporters will be discussed.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Farmacorresistencia Microbiana , Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Difosfato/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Modelos Moleculares , Especificidad por Sustrato
13.
Mol Microbiol ; 39(6): 1494-503, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11260467

RESUMEN

The extreme thermoacidophilic archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 3 and uses a variety of sugars as sole carbon and energy source. Glucose transport in this organism is mediated by a high-affinity binding protein-dependent ATP-binding cassette (ABC) transporter. Sugar-binding studies revealed the presence of four additional membrane-bound binding proteins for arabinose, cellobiose, maltose and trehalose. These glycosylated binding proteins are subunits of ABC transporters that fall into two distinct groups: (i) monosaccharide transporters that are homologous to the sugar transport family containing a single ATPase and a periplasmic-binding protein that is processed at an unusual site at its amino-terminus; (ii) di- and oligosaccharide transporters, which are homologous to the family of oligo/dipeptide transporters that contain two different ATPases, and a binding protein that is synthesized with a typical bacterial signal sequence. The latter family has not been implicated in sugar transport before. These data indicate that binding protein-dependent transport is the predominant mechanism of transport for sugars in S. solfataricus.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Arqueales , Metabolismo de los Hidratos de Carbono , Sulfolobus/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Transporte Biológico , Membrana Celular/metabolismo , Concanavalina A/metabolismo , Glucosa/metabolismo , Glicosilación , Manosa/metabolismo , Datos de Secuencia Molecular , Operón , Homología de Secuencia de Aminoácido , Sulfolobus/genética
14.
FEBS Lett ; 492(3): 183-6, 2001 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11257491

RESUMEN

Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic organisms. The transporters consist of eight membrane-spanning alpha-helices and two pore-loop structures, which are unique among secondary transporters but may resemble pore-loops found in ion channels. Another distinctive structural feature is the presence of a highly amphipathic membrane-spanning alpha-helix that provides a hydrophilic path through the membrane. The unusual structural features of the transporters are discussed in relation to their function.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Neuronas/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Sistema de Transporte de Aminoácidos X-AG , Animales , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Conformación Proteica , Análisis de Secuencia de Proteína , Transmisión Sináptica/fisiología
15.
J Biol Chem ; 276(14): 10775-81, 2001 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-11148213

RESUMEN

The carboxyl-terminal membrane-spanning segment 8 of the glutamate transporter GltT of Bacillus stearothermophilus was studied by cysteine-scanning mutagenesis. 21 single cysteine mutants were constructed in a stretch ranging from Gly-374 to Gln-404. Two mutants were not expressed, four were inactive, and two showed severely reduced glutamate transport activity. Cysteine mutations at the other positions were well tolerated. Only the two most amino- and carboxyl-terminal mutants (G374C, I375C, S399C, and Q404C) could be labeled with the large thiol reagent fluorescein maleimide, indicating unrestricted access and a location in a loop structure outside the membrane. The labeling pattern of these mutants using membrane- permeable and -impermeable thiol reagents showed that the N and C termini of the mutated stretch are located extra- and intracellularly, respectively. Thus, the location of the membrane-spanning segment was confined to a stretch of 23 residues between Gly-374 and Ser-399. Cysteine residues in three mutants in the central part of the segment (M381C, V388C, and N391C) could be labeled with the small and flexible reagent 2-aminoethyl methanethiosulfonate hydrobromide only, suggesting accessibility via a narrow aqueous pore. When the region was modeled as an alpha-helix, all positions at which cysteine mutations lead to inactive or severely impaired transporters cluster on one face of this helix. The inactive mutants showed neither proton motive force-driven uptake activity nor exchange activity nor glutamate binding. The results indicate that transmembrane segment 8 forms an amphipathic alpha-helix. The hydrophilic face of the helix lines an aqueous pore and contains many residues that are important for activity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Geobacillus stearothermophilus/química , Transportadoras de Casetes de Unión a ATP/genética , Sistema de Transporte de Aminoácidos X-AG , Proteínas Bacterianas/genética , Membrana Celular/química , Cisteína , Geobacillus stearothermophilus/genética , Mutagénesis Sitio-Dirigida , Pliegue de Proteína
16.
Microbiol Mol Biol Rev ; 64(4): 672-93, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11104814

RESUMEN

One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Antiportadores/metabolismo , Proteínas Bacterianas/clasificación , Transporte Biológico , Secuencia Conservada , Proteínas de Escherichia coli , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Biología Molecular , Datos de Secuencia Molecular
17.
J Bacteriol ; 182(22): 6374-81, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11053381

RESUMEN

Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Citratos/metabolismo , Metales Alcalinotérreos/metabolismo , Metales Pesados/metabolismo , Transporte Biológico , Cationes Bivalentes , Citratos/química , Cinética , Metales Alcalinotérreos/química , Metales Pesados/química , Simportadores
18.
J Bacteriol ; 182(22): 6525-8, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11053402

RESUMEN

Many lactobacilli from various origins were found to apparently lack cholic acid extrusion activity. Cholic acid was accumulated spontaneously, driven by the transmembrane proton gradient. Accumulation is a newly identified kind of interaction between intestinal microbes and unconjugated bile acids and is different from extrusion and modification, which have been described previously.


Asunto(s)
Ácido Cólico/metabolismo , Lactobacillus/metabolismo , Transporte Biológico , Concentración de Iones de Hidrógeno
19.
J Bacteriol ; 182(21): 6099-105, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11029430

RESUMEN

In Bacillus subtilis the citM gene encodes the Mg(2+)-citrate transporter. A target site for carbon catabolite repression (cre site) is located upstream of citM. Fusions of the citM promoter region, including the cre sequence, to the beta-galactosidase reporter gene were constructed and integrated into the amyE site of B. subtilis to study catabolic effects on citM expression. In parallel with beta-galactosidase activity, the uptake of Ni(2+)-citrate in whole cells was measured to correlate citM promoter activity with the enzymatic activity of the CitM protein. In minimal media, CitM was only expressed when citrate was present. The presence of glucose in the medium completely repressed citM expression; repression was also observed in media containing glycerol, inositol, or succinate-glutamate. Studies with B. subtilis mutants defective in the catabolite repression components HPr, Crh, and CcpA showed that the repression exerted by all these medium components was mediated via the carbon catabolite repression system. During growth on inositol and succinate, the presence of glutamate strongly potentiated the repression of citM expression by glucose. A reasonable correlation between citM promoter activity and CitM transport activity was observed in this study, indicating that the Mg(2+)-citrate uptake activity of B. subtilis is mainly regulated at the transcriptional level.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Ácido Cítrico/metabolismo , Proteínas de Unión al ADN/genética , Genes Reporteros/genética , Glucosa/farmacología , Ácido Glutámico/farmacología , Glicerol/farmacología , Inositol/farmacología , Mutación , Compuestos Organometálicos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Ácido Succínico/farmacología , Simportadores , beta-Galactosidasa/genética
20.
Proc Natl Acad Sci U S A ; 97(23): 12487-92, 2000 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-11050157

RESUMEN

The oligopeptide transport system (Opp) of Lactococcus lactis has the unique capacity to mediate the transport of peptides from 4 up to at least 18 residues. The substrate specificity of this binding protein-dependent ATP-binding cassette transporter is determined mainly by the receptor protein OppA. To study the specificity and ligand-binding mechanism of OppA, the following strategy was used: (i) OppA was purified and anchored via the lipid moiety to the surface of liposomes; (ii) the proteoliposomes were used in a rapid filtration-based binding assay with radiolabeled nonameric bradykinin as a reporter peptide; and (iii) combinatorial peptide libraries were used to determine the specificity and selectivity of OppA. The studies show that (i) OppA is able to bind peptides up to at least 35 residues, but there is a clear optimum in affinity for nonameric peptides; (ii) the specificity for nonameric peptides is not equally distributed over the whole peptide, because positions 4, 5, and 6 in the binding site are more selective; and (iii) the differences in affinity for given side chains is relatively small, but overall hydrophobic residues are favored-whereas glycine, proline, and negatively charged residues lower the binding affinity. The data indicate that not only the first six residues (enclosed by the protein) but also the C-terminal three residues interact in a nonopportunistic manner with (the surface of) OppA. This binding mechanism is different from the one generally accepted for receptors of ATP-binding cassette-transporter systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradiquinina/metabolismo , Proteínas Portadoras/metabolismo , Lactococcus lactis/metabolismo , Lipoproteínas/metabolismo , Oligopéptidos/metabolismo , Aminoácidos/metabolismo , Ligandos , Biblioteca de Péptidos , Ensayo de Unión Radioligante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA