Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
ACS Cent Sci ; 9(11): 2115-2128, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38033808

RESUMEN

Peptides are privileged ligands for diverse biomacromolecules, including proteins; however, their utility is often limited due to low membrane permeability and in-cell instability. Here, we report peptide ligand-inserted eDHFR (PLIED) fusion protein as a universal adaptor for targeting proteins of interest (POI) with cell-permeable and stable synthetic functional small molecules (SFSM). PLIED binds to POI through the peptide moiety, properly orienting its eDHFR moiety, which then recruits trimethoprim (TMP)-conjugated SFSM to POI. Using a lysine-acylating BAHA catalyst as SFSM, we demonstrate that POI (MDM2 and chromatin histone) are post-translationally and synthetically acetylated at specific lysine residues. The residue-selectivity is predictable in an atomic resolution from molecular dynamics simulations of the POI/PLIED/TMP-BAHA (MTX was used as a TMP model) ternary complex. This designer adaptor approach universally enables functional conversion of impermeable peptide ligands to permeable small-molecule ligands, thus expanding the in-cell toolbox of chemical biology.

2.
J Mol Biol ; 435(23): 168308, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37805066

RESUMEN

Pioneer factors, which can directly bind to nucleosomes, have been considered to change chromatin conformations. However, the binding impact on the nucleosome is little known. Here, we show how the pioneer factor GATA3 binds to nucleosomal DNA and affects the conformation and dynamics of nucleosomes by using a combination of SAXS, molecular modeling, and molecular dynamics simulations. Our structural models, consistent with the SAXS data, indicate that only one of the two DNA binding domains, N- and C-fingers, of GATA3 binds to an end of the DNA in solution. Our MD simulations further showed that the other unbound end of the DNA increases the fluctuation and enhances the DNA dissociation from the histone core when the N-finger binds to a DNA end, a site near the entry or exit of the nucleosome. However, this was not true for the binding of the C-finger that binds to a location about 15 base pairs distant from the DNA end. In this case, DNA dissociation occurred on the bound end. Taken together, we suggest that the N-finger and C-finger bindings of GATA3 commonly enhance DNA dissociation at one of the two DNA ends (the bound end for the C-finger binding and the unbound end for the N-finger binding), leading to triggering a conformational change in the chromatin.


Asunto(s)
Factor de Transcripción GATA3 , Nucleosomas , Cromatina/química , ADN/química , Simulación de Dinámica Molecular , Nucleosomas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Unión Proteica , Factor de Transcripción GATA3/química , Dominios Proteicos
3.
Sci Rep ; 13(1): 14226, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648703

RESUMEN

Intrinsically Disordered Proteins (IDPs) play crucial roles in numerous diseases like Alzheimer's and ALS by forming irreversible amyloid fibrils. The effectiveness of force fields (FFs) developed for globular proteins and their modified versions for IDPs varies depending on the specific protein. This study assesses 13 FFs, including AMBER and CHARMM, by simulating the R2 region of the FUS-LC domain (R2-FUS-LC region), an IDP implicated in ALS. Due to the flexibility of the region, we show that utilizing multiple measures, which evaluate the local and global conformations, and combining them together into a final score are important for a comprehensive evaluation of force fields. The results suggest c36m2021s3p with mTIP3p water model is the most balanced FF, capable of generating various conformations compatible with known ones. In addition, the mTIP3P water model is computationally more efficient than those of top-ranked AMBER FFs with four-site water models. The evaluation also reveals that AMBER FFs tend to generate more compact conformations compared to CHARMM FFs but also more non-native contacts. The top-ranking AMBER and CHARMM FFs can reproduce intra-peptide contacts but underperform for inter-peptide contacts, indicating there is room for improvement.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Esclerosis Amiotrófica Lateral , Proteína FUS de Unión a ARN , Agua
4.
Sci Rep ; 12(1): 13792, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963875

RESUMEN

A GA-guided multidimensional virtual-system coupled molecular dynamics (GA-mD-VcMD) simulation was conducted to elucidate binding mechanisms of a middle-sized flexible molecule, bosentan, to a GPCR protein, human endothelin receptor type B (hETB). GA-mD-VcMD is a generalized ensemble method that produces a free-energy landscape of the ligand-receptor binding by searching large-scale motions accompanied with stable maintenance of the fragile cell-membrane structure. All molecular components (bosentan, hETB, membrane, and solvent) were represented with an all-atom model. Then sampling was conducted from conformations where bosentan was distant from the binding site in the hETB binding pocket. The deepest basin in the resultant free-energy landscape was assigned to native-like complex conformation. The following binding mechanism was inferred. First, bosentan fluctuating randomly in solution is captured using a tip region of the flexible N-terminal tail of hETB via nonspecific attractive interactions (fly casting). Bosentan then slides occasionally from the tip to the root of the N-terminal tail (ligand-sliding). During this sliding, bosentan passes the gate of the binding pocket from outside to inside of the pocket with an accompanying rapid reduction of the molecular orientational variety of bosentan (orientational selection). Last, in the pocket, ligand-receptor attractive native contacts are formed. Eventually, the native-like complex is completed. The bosentan-captured conformations by the tip-region and root-region of the N-terminal tail correspond to two basins in the free-energy landscape. The ligand-sliding corresponds to overcoming of a free-energy barrier between the basins.


Asunto(s)
Simulación de Dinámica Molecular , Bosentán , Humanos , Ligandos , Unión Proteica , Conformación Proteica
5.
J Mol Biol ; 434(16): 167707, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35777463

RESUMEN

Nucleosome reconstitution plays an important role in many cellular functions. As an initial step, H2A-H2B dimer displacement, which is accompanied by disruption of many of the interactions within the nucleosome, should occur. To understand how H2A-H2B dimer displacement occurs, an adaptively biased molecular dynamics (ABMD) simulation was carried out to generate a variety of displacements of the H2A-H2B dimer from the fully wrapped to partially unwrapped nucleosome structures. With regards to these structures, the free energy landscape of the dimer displacement was investigated using umbrella sampling simulations. We found that the main contributors to the free energy were the docking domain of H2A and the C-terminal of H4. There were various paths for the dimer displacement which were dependent on the extent of nucleosomal DNA wrapping, suggesting that modulation of the intra-nucleosomal interaction by external factors such as histone chaperones could control the path for the H2A-H2B dimer displacement. Key residues which contributed to the free energy have also been reported to be involved in the mutations and posttranslational modifications (PTMs) which are important for assembling and/or reassembling the nucleosome at the molecular level and are found in cancer cells at the phenotypic level. Our results give insight into how the H2A-H2B dimer displacement proceeds along various paths according to different interactions within the nucleosome.


Asunto(s)
ADN , Histonas , Nucleosomas , ADN/química , Chaperonas de Histonas/química , Histonas/química , Simulación de Dinámica Molecular , Nucleosomas/química , Nucleosomas/genética , Dominios Proteicos , Multimerización de Proteína , Termodinámica
6.
Trends Genet ; 38(10): 1076-1095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618507

RESUMEN

The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.


Asunto(s)
Histonas , ARN Polimerasa II , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Procesamiento Proteico-Postraduccional/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
7.
Commun Biol ; 5(1): 184, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273347

RESUMEN

In the cyanobacterial circadian clock system, KaiA, KaiB and KaiC periodically assemble into a large complex. Here we determined the overall structure of their fully assembled complex by integrating experimental and computational approaches. Small-angle X-ray and inverse contrast matching small-angle neutron scatterings coupled with size-exclusion chromatography provided constraints to highlight the spatial arrangements of the N-terminal domains of KaiA, which were not resolved in the previous structural analyses. Computationally built 20 million structural models of the complex were screened out utilizing the constrains and then subjected to molecular dynamics simulations to examine their stabilities. The final model suggests that, despite large fluctuation of the KaiA N-terminal domains, their preferential positionings mask the hydrophobic surface of the KaiA C-terminal domains, hindering additional KaiA-KaiC interactions. Thus, our integrative approach provides a useful tool to resolve large complex structures harboring dynamically fluctuating domains.


Asunto(s)
Relojes Circadianos , Cianobacterias , Proteínas Bacterianas/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Dispersión del Ángulo Pequeño
8.
Genes (Basel) ; 13(3)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327967

RESUMEN

Hepatocyte nuclear factor 1A (HNF1A) is the master regulator of liver homeostasis and organogenesis and regulates many aspects of hepatocyte functions. It acts as a tumor suppressor in the liver, evidenced by the increased proliferation in HNF1A knockout (KO) hepatocytes. Hence, we postulated that any loss-of-function variation in the gene structure or composition (mutation) could trigger dysfunction, including disrupted transcriptional networks in liver cells. From the International Cancer Genome Consortium (ICGC) database of cancer genomes, we identified several HNF1A mutations located in the functional Pit-Oct-Unc (POU) domain. In our biochemical analysis, we found that the HNF1A POU-domain mutations Y122C, R229Q and V259F suppressed HNF4A promoter activity and disrupted the binding of HNF1A to its target HNF4A promoter without any effect on the nuclear localization. Our results suggest that the decreased transcriptional activity of HNF1A mutants is due to impaired DNA binding. Through structural simulation analysis, we found that a V259F mutation was likely to affect DNA interaction by inducing large conformational changes in the N-terminal region of HNF1A. The results suggest that POU-domain mutations of HNF1A downregulate HNF4A gene expression. Therefore, to mimic the HNF1A mutation phenotype in transcription networks, we performed siRNA-mediated knockdown (KD) of HNF4A. Through RNA-Seq data analysis for the HNF4A KD, we found 748 differentially expressed genes (DEGs), of which 311 genes were downregulated (e.g., HNF1A, ApoB and SOAT2) and 437 genes were upregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed that the DEGs were involved in several signaling pathways (e.g., lipid and cholesterol metabolic pathways). Protein-protein network analysis suggested that the downregulated genes were related to lipid and cholesterol metabolism pathways, which are implicated in hepatocellular carcinoma (HCC) development. Our study demonstrates that mutations of HNF1A in the POU domain result in the downregulation of HNF1A target genes, including HNF4A, and this may trigger HCC development through the disruption of HNF4A-HNF1A transcriptional networks.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Regulación hacia Abajo , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Humanos , Japón , Lípidos , Neoplasias Hepáticas/genética , Mutación
9.
PLoS Comput Biol ; 18(1): e1009804, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35045069

RESUMEN

Nonstructural protein 1 (nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 180-residue protein that blocks translation of host mRNAs in SARS-CoV-2-infected cells. Although it is known that SARS-CoV-2's own RNA evades nsp1's host translation shutoff, the molecular mechanism underlying the evasion was poorly understood. We performed an extended ensemble molecular dynamics simulation to investigate the mechanism of the viral RNA evasion. Simulation results suggested that the stem loop structure of the SARS-CoV-2 RNA 5'-untranslated region (SL1) binds to both nsp1's N-terminal globular region and intrinsically disordered region. The consistency of the results was assessed by modeling nsp1-40S ribosome structure based on reported nsp1 experiments, including the X-ray crystallographic structure analysis, the cryo-EM electron density map, and cross-linking experiments. The SL1 binding region predicted from the simulation was open to the solvent, yet the ribosome could interact with SL1. Cluster analysis of the binding mode and detailed analysis of the binding poses suggest residues Arg124, Lys47, Arg43, and Asn126 may be involved in the SL1 recognition mechanism, consistent with the existing mutational analysis.


Asunto(s)
COVID-19/virología , Interacciones Huésped-Patógeno/genética , SARS-CoV-2 , Regiones no Traducidas/genética , Proteínas no Estructurales Virales , Biología Computacional , Humanos , Modelos Genéticos , Simulación de Dinámica Molecular , Unión Proteica , Biosíntesis de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
10.
Cancer Cell ; 40(2): 201-218.e9, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35090594

RESUMEN

The balance of programmed death-1 (PD-1)-expressing CD8+ T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) determines the clinical efficacy of PD-1 blockade therapy through the competition of their reactivation. However, factors that determine this balance remain unknown. Here, we show that Treg cells gain higher PD-1 expression than effector T cells in highly glycolytic tumors, including MYC-amplified tumors and liver tumors. Under low-glucose environments via glucose consumption by tumor cells, Treg cells actively absorbed lactic acid (LA) through monocarboxylate transporter 1 (MCT1), promoting NFAT1 translocation into the nucleus, thereby enhancing the expression of PD-1, whereas PD-1 expression by effector T cells was dampened. PD-1 blockade invigorated the PD-1-expressing Treg cells, resulting in treatment failure. We propose that LA in the highly glycolytic TME is an active checkpoint for the function of Treg cells in the TME via upregulation of PD-1 expression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Ácido Láctico/metabolismo , Receptor de Muerte Celular Programada 1/genética , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/genética , Animales , Biomarcadores de Tumor , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunofenotipificación , Ácido Láctico/farmacología , Activación de Linfocitos , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Terapia Molecular Dirigida , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos
11.
Nat Commun ; 12(1): 6605, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782608

RESUMEN

Dimethylated histone H3 Lys36 (H3K36me2) regulates gene expression, and aberrant H3K36me2 upregulation, resulting from either the overexpression or point mutation of the dimethyltransferase NSD2, is found in various cancers. Here we report the cryo-electron microscopy structure of NSD2 bound to the nucleosome. Nucleosomal DNA is partially unwrapped, facilitating NSD2 access to H3K36. NSD2 interacts with DNA and H2A along with H3. The NSD2 autoinhibitory loop changes its conformation upon nucleosome binding to accommodate H3 in its substrate-binding cleft. Kinetic analysis revealed that two oncogenic mutations, E1099K and T1150A, increase NSD2 catalytic turnover. Molecular dynamics simulations suggested that in both mutants, the autoinhibitory loop adopts an open state that can accommodate H3 more often than the wild-type. We propose that E1099K and T1150A destabilize the interactions that keep the autoinhibitory loop closed, thereby enhancing catalytic turnover. Our analyses guide the development of specific inhibitors of NSD2.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/metabolismo , Metilación de ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Represoras/metabolismo , Microscopía por Crioelectrón , Epigenómica , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Humanos , Cinética , Metilación , Simulación de Dinámica Molecular , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Proteínas Represoras/química , Proteínas Represoras/genética
12.
J Mol Biol ; 433(15): 167110, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34153285

RESUMEN

The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.


Asunto(s)
ADN/metabolismo , Histonas/química , Histonas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/genética , Humanos , Simulación de Dinámica Molecular , Nucleosomas/metabolismo , Conformación Proteica
13.
Curr Opin Struct Biol ; 71: 7-15, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34111671

RESUMEN

The initiation signals are raised around the promoter by one of the general transcription factors, triggering a sequence of events that lead to mRNA transcript formation from target genes. Both specific noncoding DNA regions and transacting, macromolecular assemblies are intricately involved and indispensable. The transition between the subsequent transcriptional stages is accompanied by stage-specific signals and structural changes in the macromolecular assemblies and facilitated by the recruitment/removal of other chromatin and transcription-associated elements. Here, we discuss the choreography of transacting factors around promoter in the establishment and effectuation of the initial phases of transcription such as NDR formation, +1 nucleosome positioning, promoter DNA opening, and RNAPII promoter escape from a structural viewpoint.


Asunto(s)
Nucleosomas , Transactivadores , Cromatina/genética , Ensamble y Desensamble de Cromatina , Nucleosomas/genética , Regiones Promotoras Genéticas , Transcripción Genética
14.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069882

RESUMEN

Geographically, East Asia had the highest liver cancer burden in 2017. Besides this, liver cancer-related deaths were high in Japan, accounting for 3.90% of total deaths. The development of liver cancer is influenced by several factors, and genetic alteration is one of the critical factors among them. Therefore, the detailed mechanism driving the oncogenic transformation of liver cells needs to be elucidated. Recently, many researchers have focused on investigating the liver cancer genome and identified somatic mutations (MTs) of several transcription factors. In this line, next-generation sequencing of the cancer genome identified that oxidative stress-related transcription factor NRF2 (NFE2L2) is mutated in different cancers, including hepatocellular carcinoma (HCC). Here, we demonstrated that NRF2 DLG motif mutations (NRF2 D29A and L30F), found in Japanese liver cancer patients, upregulate the transcriptional activity of NRF2 in HCC cell lines. Moreover, the transcriptional activity of NRF2 mutations is not suppressed by KEAP1, presumably because NRF2 MTs disturb proper NRF2-KEAP1 binding and block KEAP1-mediated degradation of NRF2. Additionally, we showed that both MTs upregulate the transcriptional activity of NRF2 on the MMP9 promoter in Hepa1-6 and Huh7 cells, suggesting that MT derived gain-of-function of NRF2 may be important for liver tumor progression. We also found that ectopic overexpression of oncogenic BRAF WT and V600E increases the transcriptional activity of NRF2 WT on both the 3xARE reporter and MMP9 promoter. Interestingly, NRF2 D29A and L30F MTs with oncogenic BRAF V600E MT synergistically upregulate the transcription activity of NRF2 on the 3xARE reporter and MMP9 promoter in Hepa1-6 and Huh7 cells. In summary, our findings suggest that MTs in NRF2 have pathogenic effects, and that NRF2 MTs together with oncogenic BRAF V600E MT synergistically cause more aberrant transcriptional activity. The high activity of NRF2 MTs in HCC with BRAF MT warrants further exploration of the potential diagnostic, prognostic, and therapeutic utility of this pathway in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Factor 2 Relacionado con NF-E2/genética , Secuencias de Aminoácidos/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Japón , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Pronóstico , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética
15.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558240

RESUMEN

Torsional stress has a significant impact on the structure and stability of the nucleosome. RNA polymerase imposes torsional stress on the DNA in chromatin and unwraps the DNA from the nucleosome to access the genetic information encoded in the DNA. To understand how the torsional stress affects the stability of the nucleosome, we examined the unwrapping of two half superhelical turns of nucleosomal DNA from either end of the DNA under torsional stress with all-atom molecular dynamics simulations. The free energies for unwrapping the DNA indicate that positive stress that overtwists DNA facilitates a large-scale asymmetric unwrapping of the DNA without a large extension of the DNA. During the unwrapping, one end of the DNA was dissociated from H3 and H2A-H2B, while the other end of the DNA stably remained wrapped. The detailed analysis indicates that this asymmetric dissociation is facilitated by the geometry and bendability of the DNA under positive stress. The geometry stabilized the interaction between the major groove of the twisted DNA and the H3 αN-helix, and the straightened DNA destabilized the interaction with H2A-H2B. Under negative stress, the DNA became more bendable and flexible, which facilitated the binding of the unwrapped DNA to the octamer in a stable state. Consequently, we conclude that the torsional stress has a significant impact on the affinity of the DNA and the octamer through the inherent nature of the DNA and can change the accessibility of regulatory proteins.


Asunto(s)
ADN/química , Nucleosomas/química , Estrés Mecánico , Histonas/química , Simulación de Dinámica Molecular , Torque
16.
Genes (Basel) ; 11(11)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198372

RESUMEN

Gene mutations can induce cellular alteration and malignant transformation. Development of many types of cancer is associated with mutations in the B-raf proto-oncogene (BRAF) gene. The encoded protein is a component of the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway, transmitting information from the outside to the cell nucleus. The main function of the MAPK/ERK pathway is to regulate cell growth, migration, and proliferation. The most common mutations in the BRAF gene encode the V600E mutant (class I), which causes continuous activation and signal transduction, regardless of external stimulus. Consequently, cell proliferation and invasion are enhanced in cancer patients with such mutations. The V600E mutation has been linked to melanoma, colorectal cancer, multiple myeloma, and other types of cancers. Importantly, emerging evidence has recently indicated that new types of mutations (classes II and III) also play a paramount role in the development of cancer. In this minireview, we discuss the influence of various BRAF mutations in cancer, including aberrant transcriptional gene regulation in the affected tissues.


Asunto(s)
Mutación , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas B-raf/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas B-raf/metabolismo
17.
Acta Crystallogr D Struct Biol ; 76(Pt 9): 824-833, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876058

RESUMEN

Small DNA-binding proteins that target desired sequences have the potential to act as a scaffold for molecular tools such as genome editing. In this study, an engrailed homeodomain (EHD) was chosen and it was evaluated whether it could be used as a molecular module that can connect to itself to recognize a longer target sequence. It was previously shown that two EHDs connected by a linker (EHD2) recognize a target sequence twice as long as that recognized by a single EHD in cells only when Arg53 in each EHD in the tandem protein is mutated to alanine {(EHD[R53A])2}. To investigate the recognition mechanism of (EHD[R53A])2, the crystal structure of the (EHD[R53A])2-DNA complex was determined at 1.6 Šresolution. The individual EHDs were found to adopt the typical homeodomain fold. Most importantly, the base-specific interactions in the major groove necessary for the affinity/specificity of wild-type EHD were preserved in (EHD[R53A])2. Bacterial assays confirmed that the base-specific interactions are retained under cellular conditions. These observations indicate that the R53A mutation only causes a loss of the arginine-phosphate interaction at the protein-DNA interface, which reduces the DNA-binding affinity compared with the wild type. It is therefore concluded that (EHD[R53A])2 precisely recognizes tandem target sites within cells, enabling the individual EHDs to concurrently bind to the target sites with modest binding affinity. This suggests that modulation of the binding activity of each EHD is vital to construct a protein array that can precisely recognize a sequence with multiple target sites.


Asunto(s)
ADN , Proteínas de Homeodominio , ADN/química , ADN/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
18.
Curr Opin Struct Biol ; 64: 119-125, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32738677

RESUMEN

Access to the eukaryotic genome is key to the regulation of such DNA processes as transcription, replication and repair. About three-quarters of the human genome is stored and shielded within arrays of nucleosomes, the fundamental structural units of chromatin, each of which contains about 150bp of DNA and an octameric histone protein composed of two each of H2A, H2B, H3 and H4. Structural fluctuation of nucleosomes provides regulatory proteins with transient access to the internal DNA; however, nucleosome unwrapping, sliding and unstacking must occur to obtain full access of the DNA. In this review, we focus on the unwrapping of mononucleosomes and internucleosomal interactions to discuss our current understanding of the dynamics of the process.


Asunto(s)
Histonas , Nucleosomas , Cromatina , ADN/genética , Histonas/genética , Humanos , Factores de Transcripción
19.
Biophys Rev ; 12(2): 387-400, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32144738

RESUMEN

Isoforms of heterochromatin protein 1 (HP1) have been known to perform a multitude of functions ranging from gene silencing, gene activation to cell cycle regulation, and cell differentiation. This functional diversity arises from the dissimilarities coded in protein sequence which confers different biophysical and biochemical properties to individual structural elements of HP1 and thereby different behavior and interaction patterns. Hence, an understanding of various interactions of the structural elements of HP1 will be of utmost importance to better elucidate chromatin dynamics in its presence. In this review, we have gathered available information about interactions of HP1 both within and with itself as well as with chromatin elements. Also, the possible implications of these interactions are discussed.

20.
Biophys J ; 118(9): 2209-2219, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31952809

RESUMEN

An overlapping dinucleosome (OLDN) is a structure composed of one hexasome and one octasome and appears to be formed through nucleosome collision promoted by nucleosome remodeling factor(s). In this study, the solution structure of the OLDN was investigated through the integration of small-angle x-ray and neutron scattering (SAXS and SANS, respectively), computer modeling, and molecular dynamics simulations. Starting from the crystal structure, we generated a conformational ensemble based on normal mode analysis and searched for the conformations that reproduced the SAXS and SANS scattering curves well. We found that inclusion of histone tails, which are not observed in the crystal structure, greatly improved model quality. The obtained structural models suggest that OLDNs adopt a variety of conformations stabilized by histone tails situated at the interface between the hexasome and octasome, simultaneously binding to both the hexasomal and octasomal DNA. In addition, our models define a possible direction for the conformational changes or dynamics, which may provide important information that furthers our understanding of the role of chromatin dynamics in gene regulation.


Asunto(s)
Histonas , Nucleosomas , Cromatina , Histonas/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA