Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Gerontol ; 156: 111613, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740815

RESUMEN

In advanced age, there is an accelerated decline in skeletal muscle mass that appears to be secondary to repeated cycles of denervation-reinnervation and eventually, failed reinnervation. However, whether variation in reinnervation capacity explains why some muscles are less vulnerable to age-related atrophy has not been addressed. In this study we examined changes in neuromuscular junction (NMJ) morphology, fiber cross-sectional area (CSA) and fiber type, accumulation of severely atrophied myofibers, and expression of a marker of denervation in four muscles that exhibit differences in the degree of age-related atrophy and which span the extremes of fiber type composition in 8 mo old (8 M) and 34 mo old (34 M) male Fischer 344 Brown Norway F1 hybrid rats. Aging muscle atrophy was most pronounced in the fast twitch gastrocnemius (Gas; 25%) and similar between extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscle (14-15%), whereas the slow-twitch adductor longus (AL) increased in mass by 21% between 8 M and 34 M (P < 0.05 for all). Only the Sol exhibited significant alterations in fiber type with aging, and there was a decrease in fiber CSA in the Gas, EDL, and Sol (P < 0.05) with aging that was not seen in the AL. Muscles that atrophied had an increased fraction of severely atrophic myofibers (P < 0.05), but this was not observed in the AL. The Gas and EDL both demonstrated a similar degree of age-related remodeling of pre- and post-synaptic NMJ components. On the other hand, pre- and post-synaptic morphology underwent greater changes with aging in the AL, and many of these same morphological variables were already greater in the Sol vs AL at 8 M, suggesting the Sol had already undergone substantial remodeling and may be nearing its adaptive limits. Consistent with this idea, analysis of NMJ morphology in Sol from 3 M rats exhibited similar values as 8 M AL, and the Sol demonstrated greater expression of the denervation marker neural cell adhesion molecule (NCAM) compared to the AL at 34 M. Collectively, our results are consistent with NMJ remodeling capacity being finite with aging and that maintained remodeling potential confers atrophy protection in aging skeletal muscle by reducing the degree of persistent denervation.


Asunto(s)
Atrofia Muscular , Unión Neuromuscular , Envejecimiento , Animales , Masculino , Fibras Musculares de Contracción Lenta , Músculo Esquelético , Atrofia Muscular/patología , Unión Neuromuscular/fisiología , Ratas , Ratas Endogámicas F344
2.
Front Physiol ; 8: 114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28316572

RESUMEN

Eccentric ergometer training (EET) is increasingly being proposed as a therapeutic strategy to improve skeletal muscle strength in various cardiorespiratory diseases, due to the principle that lengthening muscle actions lead to high force-generating capacity at low cardiopulmonary load. One clinical population that may particularly benefit from this strategy is chronic obstructive pulmonary disease (COPD), as ventilatory constraints and locomotor muscle dysfunction often limit efficacy of conventional exercise rehabilitation in patients with severe disease. While the feasibility of EET for COPD has been established, the nature and extent of adaptation within COPD muscle is unknown. The aim of this study was therefore to characterize the locomotor muscle adaptations to EET in patients with severe COPD, and compare them with adaptations gained through conventional concentric ergometer training (CET). Male patients were randomized to either EET (n = 8) or CET (n = 7) for 10 weeks and matched for heart rate intensity. EET patients trained on average at a workload that was three times that of CET, at a lower perception of leg fatigue and dyspnea. EET led to increases in isometric peak strength and relative thigh mass (p < 0.01) whereas CET had no such effect. However, EET did not result in fiber hypertrophy, as morphometric analysis of muscle biopsies showed no increase in mean fiber cross-sectional area (p = 0.82), with variability in the direction and magnitude of fiber-type responses (20% increase in Type 1, p = 0.18; 4% decrease in Type 2a, p = 0.37) compared to CET (26% increase in Type 1, p = 0.04; 15% increase in Type 2a, p = 0.09). EET had no impact on mitochondrial adaptation, as revealed by lack of change in markers of mitochondrial biogenesis, content and respiration, which contrasted to improvements (p < 0.05) within CET muscle. While future study is needed to more definitively determine the effects of EET on fiber hypertrophy and associated underlying molecular signaling pathways in COPD locomotor muscle, our findings promote the implementation of this strategy to improve muscle strength. Furthermore, contrasting mitochondrial adaptations suggest evaluation of a sequential paradigm of eccentric followed by concentric cycling as a means of augmenting the training response and attenuating skeletal muscle dysfunction in patients with advanced COPD.

3.
Skelet Muscle ; 6: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26893822

RESUMEN

BACKGROUND: Low mitochondrial content and oxidative capacity are well-established features of locomotor muscle dysfunction, a prevalent and debilitating systemic occurrence in patients with chronic obstructive pulmonary disease (COPD). Although the exact cause is not firmly established, physical inactivity and oxidative stress are among the proposed underlying mechanisms. Here, we assess the impact of COPD pathophysiology on mitochondrial DNA (mtDNA) integrity, biogenesis, and cellular oxidative capacity in locomotor muscle of COPD patients and healthy controls. We hypothesized that the high oxidative stress environment of COPD muscle would yield a higher presence of deletion-containing mtDNA and oxidative-deficient fibers and impaired capacity for mitochondrial biogenesis. METHODS: Vastus lateralis biopsies were analyzed from 29 COPD patients and 19 healthy age-matched controls for the presence of mtDNA deletions, levels of oxidatively damaged DNA, mtDNA copy number, and regulators of mitochondrial biogenesis as well the proportion of oxidative-deficient fibers (detected histologically as cytochrome c oxidase-deficient, succinate dehydrogenase positive (COX(-)/SDH(+) )). Additionally, mtDNA copy number and mitochondrial transcription factor A (TFAM) content were measured in laser captured COX(-)SDH(+) and normal single fibers of both COPD and controls. RESULTS: Compared to controls, COPD muscle exhibited significantly higher levels of oxidatively damaged DNA (8-hydroxy-2-deoxyguanosine (8-OHdG) levels = 387 ± 41 vs. 258 ± 21 pg/mL) and higher prevalence of mtDNA deletions (74 vs. 15 % of subjects in each group), which was accompanied by a higher abundance of oxidative-deficient fibers (8.0 ± 2.1 vs. 1.5 ± 0.4 %). Interestingly, COPD patients with mtDNA deletions had higher levels of 8-OHdG (457 ± 46 pg/mL) and longer smoking history (66.3 ± 7.5 years) than patients without deletions (197 ± 29 pg/mL; 38.0 ± 7.3 years). Transcript levels of regulators of mitochondrial biogenesis and oxidative metabolism were upregulated in COPD compared to controls. However, single fiber analyses of COX(-)/SDH(+) and normal fibers exposed an impairment in mitochondrial biogenesis in COPD; in healthy controls, we detected a marked upregulation of mtDNA copy number and TFAM protein in COX(-)/SDH(+) compared to normal fibers, reflecting the expected compensatory attempt by the oxidative-deficient cells to increase energy levels; in contrast, they were similar between COX(-)/SDH(+) and normal fibers in COPD patients. Taken together, these findings suggest that although the signaling factors regulating mitochondrial biogenesis are increased in COPD muscle, impairment in the translation of these signals prevents the restoration of normal oxidative capacity. CONCLUSIONS: Single fiber analyses provide the first substantive evidence that low muscle oxidative capacity in COPD cannot be explained by physical inactivity alone and is likely driven by the disease pathophysiology.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Músculo Cuádriceps/metabolismo , Factores de Transcripción/metabolismo , Anciano , Estudios de Casos y Controles , Daño del ADN , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/patología , Proteínas Mitocondriales/genética , Fibras Musculares Esqueléticas/patología , Biogénesis de Organelos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba
4.
Am J Physiol Cell Physiol ; 310(4): C318-27, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26632598

RESUMEN

Normal adult aging is associated with impaired muscle contractile function; however, to what extent cross-bridge kinetics are altered in aging muscle is not clear. We used a slacken restretch maneuver on single muscle fiber segments biopsied from the vastus lateralis of young adults (∼23 yr), older nonathlete (NA) adults (∼80 yr), and age-matched world class masters athletes (MA; ∼80 yr) to assess the rate of force redevelopment (ktr) and cross-bridge kinetics. A post hoc analysis was performed, and only the mechanical properties of "slow type" fibers based on unloaded shortening velocity (Vo) measurements are reported. The MA and NA were ∼54 and 43% weaker, respectively, for specific force compared with young. Similarly, when force was normalized to cross-sectional area determined via the fiber shape angularity data, both old groups did not differ, and the MA and NA were ∼43 and 48% weaker, respectively, compared with young (P < 0.05). Vo for both MA and NA old groups was 62 and 46% slower, respectively, compared with young. Both MA and NA adults had approximately two times slower values for ktr compared with young. The slower Vo in both old groups relative to young, coupled with a similarly reduced ktr, suggests impaired cross-bridge kinetics are responsible for impaired single fiber contractile properties with aging. These results challenge the widely accepted resilience of slow type fibers to cellular aging.


Asunto(s)
Envejecimiento , Atletas , Contracción Muscular , Fibras Musculares Esqueléticas , Fuerza Muscular , Músculo Cuádriceps/fisiopatología , Sarcopenia/fisiopatología , Factores de Edad , Anciano , Anciano de 80 o más Años , Biopsia , Técnica del Anticuerpo Fluorescente , Humanos , Cinética , Masculino , Fibras Musculares Esqueléticas/química , Cadenas Pesadas de Miosina/análisis , Músculo Cuádriceps/química , Sarcopenia/diagnóstico , Sarcopenia/metabolismo , Adulto Joven
5.
Sci Rep ; 5: 8717, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732599

RESUMEN

Anticancer treatments for childhood acute lymphoblastic leukaemia (ALL) are highly effective but are now implicated in causing impaired muscle function in long-term survivors. However, no comprehensive assessment of skeletal muscle mitochondrial functions in long-term survivors has been performed and the presence of persistent chemotherapy-induced skeletal muscle mitochondrial dysfunction remains a strong possibility. Non-tumour-bearing mice were treated with two drugs that have been used frequently in ALL treatment (doxorubicin and dexamethasone) for up to 4 cycles at 3-week intervals and euthanized 3 months after the 4th cycle. Treated animals had impaired growth and lower muscle mass as well as reduced mitochondrial respiration and increased reactive oxygen species production per unit oxygen consumption. Mitochondrial DNA content and protein levels of key mitochondrial membrane proteins and markers of mitochondrial biogenesis were unchanged, but protein levels of Parkin were reduced. This suggests a novel pattern of chemotherapy-induced mitochondrial dysfunction in skeletal muscle that persists because of an acquired defect in mitophagy signaling. The results could explain the observed functional impairments in adult survivors of childhood ALL and may also be relevant to long-term survivors of other cancers treated with similar regimes.


Asunto(s)
Antraciclinas/farmacología , Antineoplásicos/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antraciclinas/administración & dosificación , Antineoplásicos/administración & dosificación , Respiración de la Célula/efectos de los fármacos , ADN Mitocondrial , Dexametasona/administración & dosificación , Dexametasona/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Femenino , Ratones , Mitocondrias Musculares/genética , Mitofagia/efectos de los fármacos , Músculo Esquelético/patología , Mutación , Estrés Oxidativo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA