Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Redox Biol ; 75: 103211, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38908072

RESUMEN

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

2.
Int J Surg ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498387

RESUMEN

BACKGROUND: Increasing life expectancy affects all aspects of healthcare. During surgery elderly patients are prone to complications and have higher risk of death. We aimed to investigate if adult patients undergoing surgery at a large Swedish university hospital were getting older and sicker over time, and if this potential shift in age and illness severity was associated with higher patient mortality rates. MATERIALS AND METHODS: This was a 16-year cohort study on all surgical procedures performed in adult patients 2006-2021 at two sites of X University Hospital. Study data was obtained from the surgical system, electronic medical records and cause-of-death register. Information on age, sex, ASA-classification, date-, type-, acuity- and duration of surgery was collected. ICD-codes were used to calculate Charlson comorbidity index (CCI). Short-, medium- and long-term mortality rates were assessed. Logistic regression models were used to evaluate changes over time. RESULTS: There were 622,814 surgical procedures 2006-2021. Age, ASA-classification and CCI increased over time (P<0.0001). The proportions of age ≥60 years increased from 41.8 to 52.8% and of ASA-class ≥3 from 22.5 to 47.6%. Comparing 2018-2021 with 2006-2009, odds ratios (95% confidence intervals) of 30-, 90- and 365-day mortality, adjusted for age, sex, non-elective surgery and ASA-classification, decreased significantly to 0.75 (0.71-0.79), 0.72 (0.69-0.76), and 0.76 (0.74-0.79), respectively. CONCLUSION: Although the surgical population got older and sicker during the 16-year study period, short-, medium- and long-term mortality rates decreased significantly. These demographic shifts must be taken into account when planning for future healthcare needs to preserve patient safety.

3.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464067

RESUMEN

Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.

4.
Nature ; 626(7998): 401-410, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297129

RESUMEN

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Asunto(s)
Linfoma de Burkitt , Deshidrocolesteroles , Ferroptosis , Neuroblastoma , Animales , Humanos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Supervivencia Celular , Deshidrocolesteroles/metabolismo , Peroxidación de Lípido , Trasplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patología , Oxidación-Reducción , Fenotipo , Reproducibilidad de los Resultados
5.
Nat Chem ; 16(2): 239-248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37996732

RESUMEN

Late-stage functionalization is an economical approach to optimize the properties of drug candidates. However, the chemical complexity of drug molecules often makes late-stage diversification challenging. To address this problem, a late-stage functionalization platform based on geometric deep learning and high-throughput reaction screening was developed. Considering borylation as a critical step in late-stage functionalization, the computational model predicted reaction yields for diverse reaction conditions with a mean absolute error margin of 4-5%, while the reactivity of novel reactions with known and unknown substrates was classified with a balanced accuracy of 92% and 67%, respectively. The regioselectivity of the major products was accurately captured with a classifier F-score of 67%. When applied to 23 diverse commercial drug molecules, the platform successfully identified numerous opportunities for structural diversification. The influence of steric and electronic information on model performance was quantified, and a comprehensive simple user-friendly reaction format was introduced that proved to be a key enabler for seamlessly integrating deep learning and high-throughput experimentation for late-stage functionalization.


Asunto(s)
Aprendizaje Profundo , Ensayos Analíticos de Alto Rendimiento
6.
Commun Chem ; 6(1): 256, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985850

RESUMEN

Enhancing the properties of advanced drug candidates is aided by the direct incorporation of specific chemical groups, avoiding the need to construct the entire compound from the ground up. Nevertheless, their chemical intricacy often poses challenges in predicting reactivity for C-H activation reactions and planning their synthesis. We adopted a reaction screening approach that combines high-throughput experimentation (HTE) at a nanomolar scale with computational graph neural networks (GNNs). This approach aims to identify suitable substrates for late-stage C-H alkylation using Minisci-type chemistry. GNNs were trained using experimentally generated reactions derived from in-house HTE and literature data. These trained models were then used to predict, in a forward-looking manner, the coupling of 3180 advanced heterocyclic building blocks with a diverse set of sp3-rich carboxylic acids. This predictive approach aimed to explore the substrate landscape for Minisci-type alkylations. Promising candidates were chosen, their production was scaled up, and they were subsequently isolated and characterized. This process led to the creation of 30 novel, functionally modified molecules that hold potential for further refinement. These results positively advocate the application of HTE-based machine learning to virtual reaction screening.

7.
Nucleic Acids Res ; 51(18): 9629-9642, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650653

RESUMEN

The use of synthetic chemicals to selectively interfere with chromatin and the chromatin-bound proteome represents a great opportunity for pharmacological intervention. Recently, synthetic foldamers that mimic the charge surface of double-stranded DNA have been shown to interfere with selected protein-DNA interactions. However, to better understand their pharmacological potential and to improve their specificity and selectivity, the effect of these molecules on complex chromatin needs to be investigated. We therefore systematically studied the influence of the DNA mimic foldamers on the chromatin-bound proteome using an in vitro chromatin assembly extract. Our studies show that the foldamer efficiently interferes with the chromatin-association of the origin recognition complex in vitro and in vivo, which leads to a disturbance of cell cycle in cells treated with foldamers. This effect is mediated by a strong direct interaction between the foldamers and the origin recognition complex and results in a failure of the complex to organise chromatin around replication origins. Foldamers that mimic double-stranded nucleic acids thus emerge as a powerful tool with designable features to alter chromatin assembly and selectively interfere with biological mechanisms.


Asunto(s)
Biomimética , Ensamble y Desensamble de Cromatina , Ciclo Celular , Cromatina , ADN , Replicación del ADN , Complejo de Reconocimiento del Origen/metabolismo , Proteoma , Animales , Drosophila , Embrión no Mamífero/química , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Proteínas Cromosómicas no Histona/metabolismo
8.
Langmuir ; 38(39): 11941-11949, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36130117

RESUMEN

We report on photolipid doping of giant unilamellar vesicles (GUVs) via vesicle fusion with small unilamellar photolipid vesicles (pSUVs), which enables retroactive optical control of the membrane properties. We observe that vesicle fusion is light-dependent, if the phospholipids are neutral. Charge-mediated fusion involving anionic and cationic lipid molecules augments the overall fusion performance and doping efficiency, even in the absence of light exposure. Using phosphatidylcholine analogs with one or two azobenzene photoswitches (azo-PC and dazo-PC) affects domain formation, bending stiffness, and shape of the resulting vesicles in response to irradiation. Moreover, we show that optical membrane control can be extended to long wavelengths using red-absorbing photolipids (red-azo-PC). Combined, our findings present an attractive and practical method for the precise delivery of photolipids, which offers new prospects for the optical control of membrane function.


Asunto(s)
Liposomas , Liposomas Unilamelares , Cationes , Fusión de Membrana , Fosfatidilcolinas/efectos de la radiación , Fosfolípidos , Liposomas Unilamelares/efectos de la radiación
9.
Science ; 377(6604): 411-415, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862530

RESUMEN

Tetrodotoxin (TTX) is a neurotoxic natural product that is an indispensable probe in neuroscience, a biosynthetic and ecological enigma, and a celebrated target of synthetic chemistry. Here, we present a stereoselective synthesis of TTX that proceeds in 22 steps from a glucose derivative. The central cyclohexane ring of TTX and its α-tertiary amine moiety were established by the intramolecular 1,3-dipolar cycloaddition of a nitrile oxide, followed by alkynyl addition to the resultant isoxazoline. A ruthenium-catalyzed hydroxylactonization set the stage for the formation of the dioxa-adamantane core. Installation of the guanidine, oxidation of a primary alcohol, and a late-stage epimerization gave a mixture of TTX and anhydro-TTX. This synthetic approach could give ready access to biologically active derivatives.


Asunto(s)
Tetrodotoxina , Bloqueadores del Canal de Sodio Activado por Voltaje , Catálisis , Reacción de Cicloadición , Guanidina/química , Rutenio/química , Estereoisomerismo , Tetrodotoxina/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química
10.
Biol Chem ; 403(4): 377-390, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35032422

RESUMEN

Mutation-selective drugs constitute a great advancement in personalized anticancer treatment with increased quality of life and overall survival in cancers. However, the high adaptability and evasiveness of cancers can lead to disease progression and the development of drug resistance, which cause recurrence and metastasis. A common characteristic in advanced neoplastic cancers is the epithelial-mesenchymal transition (EMT) which is strongly interconnected with H2O2 signaling, increased motility and invasiveness. H2O2 relays its signal through the installation of oxidative posttranslational modifications on cysteines. The increased H2O2 levels that are associated with an EMT confer a heightened sensitivity towards the induction of ferroptosis as a recently discovered vulnerability.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Progresión de la Enfermedad , Humanos , Peróxido de Hidrógeno , Neoplasias/patología , Calidad de Vida
11.
Langmuir ; 38(1): 385-393, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34969246

RESUMEN

Photoswitchable phospholipids, or "photolipids", that harbor an azobenzene group in their lipid tails are versatile tools to manipulate and control lipid bilayer properties with light. So far, the limited ultraviolet-A/blue spectral range in which the photoisomerization of regular azobenzene operates has been a major obstacle for biophysical or photopharmaceutical applications. Here, we report on the synthesis of nano- and micrometer-sized liposomes from tetra-ortho-chloro azobenzene-substituted phosphatidylcholine (termed red-azo-PC) that undergoes photoisomerization on irradiation with tissue-penetrating red light (≥630 nm). Photoswitching strongly affects the fluidity and mechanical properties of lipid membranes, although small-angle X-ray scattering and dynamic light scattering measurements reveal only a minor influence on the overall bilayer thickness and area expansion. By controlling the photostationary state and the photoswitching efficiency of red-azo-PC for specific wavelengths, we demonstrate that shape transitions such as budding or pearling and the division of cell-sized vesicles can be achieved. These results emphasize the applicability of red-azo-PC as a nanophotonic tool in synthetic biology and for biomedical applications.


Asunto(s)
Luz , Fosfatidilcolinas , Compuestos Azo , Membrana Dobles de Lípidos , Liposomas , Fosfolípidos
12.
J Am Chem Soc ; 143(24): 8951-8956, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34115935

RESUMEN

G protein-coupled receptors (GPCRs) are the most common targets of drug discovery. However, the similarity between related GPCRs combined with the complex spatiotemporal dynamics of receptor activation in vivo has hindered drug development. Photopharmacology offers the possibility of using light to control the location and timing of drug action by incorporating a photoisomerizable azobenzene into a GPCR ligand, enabling rapid and reversible switching between an inactive and active configuration. Recent advances in this area include (i) photoagonists and photoantagonists that directly control receptor activity but are nonselective because they bind conserved sites, and (ii) photoallosteric modulators that bind selectively to nonconserved sites but indirectly control receptor activity by modulating the response to endogenous ligand. In this study, we designed a photoswitchable allosteric agonist that targets a nonconserved allosteric site for selectivity and activates the receptor on its own to provide direct control. This work culminated in the development of aBINA, a photoswitchable allosteric agonist that selectively activates the Gi/o-coupled metabotropic glutamate receptor 2 (mGluR2). aBINA is the first example of a new class of precision drugs for GPCRs and other clinically important signaling proteins.


Asunto(s)
Derivados del Benceno/farmacología , Receptores Acoplados a Proteínas G/agonistas , Regulación Alostérica/efectos de los fármacos , Derivados del Benceno/síntesis química , Derivados del Benceno/química , Humanos , Ligandos , Procesos Fotoquímicos
13.
Anaesth Intensive Care ; 49(1): 52-61, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33530699

RESUMEN

The intensive care unit (ICU) is one of the most technically advanced environments in healthcare, using a multitude of medical devices for drug administration, mechanical ventilation and patient monitoring. However, these technologies currently come with disadvantages, namely noise pollution, information overload and alarm fatigue-all caused by too many alarms. Individual medical devices currently generate alarms independently, without any coordination or prioritisation with other devices, leading to a cacophony where important alarms can be lost amongst trivial ones, occasionally with serious or even fatal consequences for patients. We have called this approach to the design of medical devices the single-device paradigm, and believe it is obsolete in modern hospitals where patients are typically connected to several devices simultaneously. Alarm rates of one alarm every four minutes for only the physiological monitors (as recorded in the ICUs of two hospitals contributing to this paper) degrades the quality of the patient's healing environment and threatens patient safety by constantly distracting healthcare professionals. We outline a new approach to medical device design involving the application of human factors principles which have been successful in eliminating alarm fatigue in commercial aviation. Our approach comprises the networked-device paradigm, comprehensive alarms and humaniform information displays. Instead of each medical device alarming separately at the patient's bedside, our proposed approach will integrate, prioritise and optimise alarms across all devices attached to each patient, display information more intuitively and hence increase alarm quality while reducing the number of alarms by an order of magnitude below current levels.


Asunto(s)
Alarmas Clínicas , Diseño de Equipo , Humanos , Unidades de Cuidados Intensivos , Monitoreo Fisiológico , Seguridad del Paciente
14.
Acta Anaesthesiol Scand ; 65(1): 76-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32892337

RESUMEN

BACKGROUND: Information on characteristics and outcomes of intensive care unit (ICU) patients with COVID-19 remains limited. We examined characteristics, clinical course and early outcomes of patients with COVID-19 admitted to ICU. METHODS: We included all 260 patients with COVID-19 admitted to nine ICUs at the Karolinska University Hospital (Stockholm, Sweden) between 9 March and 20 April 2020. Primary outcome was in-hospital mortality among patients with definite outcomes (discharged from ICU or death), as of 30 April 2020 (study end point). Secondary outcomes included ICU length of stay, the proportion of patients receiving mechanical ventilation and renal replacement therapy, and hospital discharge destination. RESULTS: Of 260 ICU patients with COVID-19, 208 (80.0%) were men, the median age was 59 (IQR 51-65) years, 154 (59.2%) had at least one comorbidity, and the median duration of symptoms preceding ICU admission was 11 (IQR 8-14) days. Sixty-two (23.8%) patients remained in ICU at study end point. Among the 198 patients with definite outcomes, ICU length of stay was 12 (IQR, 6-18) days, 163 (82.3%) received mechanical ventilation, 28 (14.1%) received renal replacement therapy, 60 (30.3%) died, 62 (31.3%) were discharged home, 47 (23.7%) were discharged to ward, and 29 (14.6%) were discharged to another health care facility. On multivariable logistic regression analysis, older age and admission from the emergency department was associated with higher mortality. CONCLUSION: This study presents detailed data on clinical characteristics and early outcomes of consecutive patients with COVID-19 admitted to ICU in a large tertiary hospital in Sweden.


Asunto(s)
COVID-19/terapia , Cuidados Críticos/estadística & datos numéricos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , Comorbilidad , Determinación de Punto Final , Femenino , Mortalidad Hospitalaria , Humanos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Alta del Paciente , Pacientes , Terapia de Reemplazo Renal , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos , Suecia , Centros de Atención Terciaria , Resultado del Tratamiento
15.
Langmuir ; 36(45): 13509-13515, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33143416

RESUMEN

Controlling the release or uptake of (bio-) molecules and drugs from liposomes is critically important for a range of applications in bioengineering, synthetic biology, and drug delivery. In this paper, we report how the reversible photoswitching of synthetic lipid bilayer membranes made from azobenzene-containing phosphatidylcholine (azo-PC) molecules (photolipids) leads to increased membrane permeability. We show that cell-sized, giant unilamellar vesicles (GUVs) prepared from photolipids display leakage of fluorescent dyes after irradiation with UV-A and visible light. Langmuir-Blodgett and patch-clamp measurements show that the permeability is the result of transient pore formation. By comparing the trans-to-cis and cis-to-trans isomerization process, we find that this pore formation is the result of area fluctuations and a change of the area cross-section between both photolipid isomers.

16.
ACS Chem Neurosci ; 11(22): 3802-3813, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33108719

RESUMEN

Photoswitchable ligands can add an optical switch to a target receptor or signaling cascade and enable reversible control of neural circuits. The application of this approach, termed photopharmacology, to behavioral experiments has been impeded by a lack of integrated hardware capable of delivering both light and compounds to deep brain regions in moving subjects. Here, we devise a hybrid photochemical genetic approach to target neurons using a photoswitchable agonist of the capsaicin receptor TRPV1, red-AzCA-4. Using multifunctional fibers with optical and microfluidic capabilities, we delivered a transgene coding for TRPV1 into the ventral tegmental area (VTA). This sensitized excitatory VTA neurons to red-AzCA-4, allowing us to optically control conditioned place preference in mice, thus extending applications of photopharmacology to behavioral experiments. Applied to endogenous receptors, our approach may accelerate future studies of molecular mechanisms underlying animal behavior.


Asunto(s)
Neuronas , Área Tegmental Ventral , Animales , Conducta Animal , Condicionamiento Clásico , Ligandos , Ratones
17.
Biochim Biophys Acta Biomembr ; 1862(11): 183438, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32781156

RESUMEN

The fusion of lipid membranes is central to many biological processes and requires substantial structural reorganization of lipids brought about by the action of fusogenic proteins. Previous molecular dynamics simulations have suggested that splayed lipids, whose tails transiently contact the headgroup region of the bilayer, initiate lipid mixing. Here, we explore the lipid splay hypothesis experimentally. We show that the light-induced trans/cis conversion of the azobenzene-based tail of a model lipid molecule enhances the probability by which its own acyl chains, or the acyl chains of the host lipid, transiently contact the lipid headgroup in a liposomal bilayer. At the same time, the trans/cis conversion triggers lipid mixing of sonicated or extruded liposomes, without requiring fusogenic proteins. This establishes a causal relationship between lipid splay and membrane fusion.


Asunto(s)
Membrana Dobles de Lípidos/química , Fusión de Membrana , Modelos Químicos
18.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32730809

RESUMEN

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Asunto(s)
Cisteína/metabolismo , Ligandos , Linfocitos T/metabolismo , Acetamidas/química , Acetamidas/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Células Cultivadas , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Activación de Linfocitos/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfocitos T/citología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
19.
Gut ; 69(10): 1796-1806, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32317332

RESUMEN

OBJECTIVE: Bacterial translocation to various organs including human adipose tissue (AT) due to increased intestinal permeability remains poorly understood. We hypothesised that: (1) bacterial presence is highly tissue specific and (2) related in composition and quantity to immune inflammatory and metabolic burden. DESIGN: We quantified and sequenced the bacterial 16S rRNA gene in blood and AT samples (omental, mesenteric and subcutaneous) of 75 subjects with obesity with or without type 2 diabetes (T2D) and used catalysed reporter deposition (CARD) - fluorescence in situ hybridisation (FISH) to detect bacteria in AT. RESULTS: Under stringent experimental and bioinformatic control for contaminants, bacterial DNA was detected in blood and omental, subcutaneous and mesenteric AT samples in the range of 0.1 to 5 pg/µg DNA isolate. Moreover, CARD-FISH allowed the detection of living, AT-borne bacteria. Proteobacteria and Firmicutes were the predominant phyla, and bacterial quantity was associated with immune cell infiltration, inflammatory and metabolic parameters in a tissue-specific manner. Bacterial composition differed between subjects with and without T2D and was associated with related clinical measures, including systemic and tissues-specific inflammatory markers. Finally, treatment of adipocytes with bacterial DNA in vitro stimulated the expression of TNFA and IL6. CONCLUSIONS: Our study provides contaminant aware evidence for the presence of bacteria and bacterial DNA in several ATs in obesity and T2D and suggests an important role of bacteria in initiating and sustaining local AT subclinical inflammation and therefore impacting metabolic sequelae of obesity.


Asunto(s)
Tejido Adiposo , Traslocación Bacteriana/inmunología , ADN Bacteriano/aislamiento & purificación , Diabetes Mellitus Tipo 2 , Firmicutes/aislamiento & purificación , Obesidad , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/sangre , Tejido Adiposo/inmunología , Tejido Adiposo/microbiología , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Femenino , Humanos , Inflamación/inmunología , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Am Chem Soc ; 142(14): 6538-6547, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32207943

RESUMEN

We computationally dissected the electronic and geometrical influences of ortho-chlorinated azobenzenes on their photophysical properties. X-ray analysis provided the insight that trans-tetra-ortho-chloro azobenzene is conformationally flexible and thus subject to molecular motions. This allows the photoswitch to adopt a range of red-shifted geometries, which account for the extended n → π* band tails. On the basis of our results, we designed the di-ortho-fluoro di-ortho-chloro (dfdc) azobenzene and provided computational evidence for the superiority of this substitution pattern to tetra-ortho-chloro azobenzene. Thereafter, we synthesized dfdc azobenzene by ortho-chlorination via 2-fold C-H activation and experimentally confirmed its structural and photophysical properties through UV-vis, NMR, and X-ray analyses. The advantages include near-bistable isomers and an increased separation of the n → π* bands between the trans- and cis-conformations, which allows for the generation of unusually high levels of the cis-isomer by irradiation with green/yellow light as well as red light within the biooptical window.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA