Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
EMBO J ; 36(20): 3029-3045, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28899900

RESUMEN

Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders such as Hirschsprung disease.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Epiteliales/fisiología , Mucosa Intestinal/fisiología , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Drosophila , Regulación de la Expresión Génica , Humanos , Ratones , Vía de Señalización Wnt
2.
BMC Biol ; 14(1): 94, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27776507

RESUMEN

BACKGROUND: In vertebrate organisms, the neural crest (NC) gives rise to multipotential and highly migratory progenitors which are distributed throughout the embryo and generate, among other structures, the peripheral nervous system, including the intrinsic neuroglial networks of the gut, i.e. the enteric nervous system (ENS). The majority of enteric neurons and glia originate from vagal NC-derived progenitors which invade the foregut mesenchyme and migrate rostro-caudally to colonise the entire length of the gut. Although the migratory behaviour of NC cells has been studied extensively, it remains unclear how their properties and response to microenvironment change as they navigate through complex cellular terrains to reach their target embryonic sites. RESULTS: Using conditional gene inactivation in mice we demonstrate here that the cell cycle-dependent protein Geminin (Gem) is critical for the survival of ENS progenitors in a stage-dependent manner. Gem deletion in early ENS progenitors (prior to foregut invasion) resulted in cell-autonomous activation of DNA damage response and p53-dependent apoptosis, leading to severe intestinal aganglionosis. In contrast, ablation of Gem shortly after ENS progenitors had invaded the embryonic gut did not result in discernible survival or migratory deficits. In contrast to other developmental systems, we obtained no evidence for a role of Gem in commitment or differentiation of ENS lineages. The stage-dependent resistance of ENS progenitors to mutation-induced genotoxic stress was further supported by the enhanced survival of post gut invasion ENS lineages to γ-irradiation relative to their predecessors. CONCLUSIONS: Our experiments demonstrate that, in mammals, NC-derived ENS lineages are sensitive to genotoxic stress in a stage-specific manner. Following gut invasion, ENS progenitors are distinctly resistant to Gem ablation and irradiation in comparison to their pre-enteric counterparts. These studies suggest that the microenvironment of the embryonic gut protects ENS progenitors and their progeny from genotoxic stress.


Asunto(s)
Daño del ADN/efectos de los fármacos , Sistema Nervioso Entérico/citología , Geminina/farmacología , Cresta Neural/citología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Sistema Nervioso Entérico/efectos de los fármacos , Femenino , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Neurogénesis/efectos de los fármacos , Embarazo
3.
Nature ; 513(7519): 551-4, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25079316

RESUMEN

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Incisivo/citología , Células Madre Mesenquimatosas/citología , Neuroglía/citología , Animales , Rastreo Celular , Células Clonales/citología , Pulpa Dental/citología , Femenino , Incisivo/embriología , Masculino , Ratones , Modelos Biológicos , Cresta Neural/citología , Odontoblastos/citología , Regeneración , Células de Schwann/citología
4.
Science ; 345(6192): 82-7, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24925909

RESUMEN

The peripheral autonomic nervous system reaches far throughout the body and includes neurons of diverse functions, such as sympathetic and parasympathetic. We show that the parasympathetic system in mice--including trunk ganglia and the cranial ciliary, pterygopalatine, lingual, submandibular, and otic ganglia--arise from glial cells in nerves, not neural crest cells. The parasympathetic fate is induced in nerve-associated Schwann cell precursors at distal peripheral sites. We used multicolor Cre-reporter lineage tracing to show that most of these neurons arise from bi-potent progenitors that generate both glia and neurons. This nerve origin places cellular elements for generating parasympathetic neurons in diverse tissues and organs, which may enable wiring of the developing parasympathetic nervous system.


Asunto(s)
Células-Madre Neurales/citología , Neurogénesis , Neuroglía/citología , Neuronas/citología , Sistema Nervioso Parasimpático/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ganglios Parasimpáticos/citología , Ganglios Parasimpáticos/embriología , Ratones , Ratones Mutantes , Células-Madre Neurales/metabolismo , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Neuroglía/metabolismo , Neuronas/metabolismo , Sistema Nervioso Parasimpático/citología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA