Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Zygote ; 32(2): 149-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38384250

RESUMEN

Electromagnetic radiation (EMR) has deleterious effects on sperm motility and viability, as well as oocyte membrane and organelle structure. The aim was to assess the effects of cell phone radiation on preimplantation embryo morphokinetics and blastocyst viability in mice. For superovulation, 20 female mice were treated with intraperitoneal (IP) injections of 10 IU pregnant mare's serum gonadotropin (Folligon® PMSG), followed by 10 IU of human chorionic gonadotropin (hCG) after 48 h. The zygotes (n = 150) from the control group were incubated for 4 days. The experimental zygotes (n = 150) were exposed to a cell phone emitting EMR with a frequency range 900-1800 MHz for 30 min on day 1. Then, all embryos were cultured in the time-lapse system and annotated based on time points from the 2-cell stage (t2) to hatched blastocyst (tHDyz), as well as abnormal cleavage patterns. Blastocyst viability was assessed using Hoechst and propidium iodide staining. Significant increases (P < 0.05) were observed in the cleavage division time points of t2, t8, t10, and t12 of the experimental group compared with the controls. In terms of blastocyst formation parameters, a delay in embryo development was observed in the experimental group compared with the controls. Data analysis of the time intervals between the two groups showed a significant difference in the s3 time interval (P < 0.05). Also, the rates of fragmentation, reverse cleavage, vacuole formation, and embryo arrest were significantly higher in the experimental group (P < 0.05). Furthermore, the cell survival rate in the experimental group was lower than the control group (P < 0.05). Exposure to EMR has detrimental consequences for preimplantation embryo development in mice. These effects can manifest as defects in the cleavage stage and impaired blastocyst formation, leading to lower cell viability.


Asunto(s)
Blastocisto , Teléfono Celular , Radiación Electromagnética , Desarrollo Embrionario , Animales , Femenino , Blastocisto/efectos de la radiación , Blastocisto/fisiología , Blastocisto/citología , Ratones , Desarrollo Embrionario/efectos de la radiación , Masculino , Embarazo , Técnicas de Cultivo de Embriones/métodos , Supervivencia Celular/efectos de la radiación , Superovulación/efectos de la radiación
2.
Clin Exp Reprod Med ; 51(1): 13-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263592

RESUMEN

Radiofrequency electromagnetic radiation (RF-EMR) from various sources may impact health due to the generation of frequency bands. Broad pulses emitted within frequency bands can be absorbed by cells, influencing their function. Numerous laboratory studies have demonstrated that mobile phones-generally the most widely used devices-can have harmful effects on sex cells, such as sperm and oocytes, by producing RF-EMR. Moreover, some research has indicated that RF-EMR generated by mobile phones can influence sperm parameters, including motility, morphology, viability, and (most critically) DNA structure. Consequently, RF-EMR can disrupt both sperm function and fertilization. However, other studies have reported that exposure of spermatozoa to RF-EMR does not affect the functional parameters or genetic structure of sperm. These conflicting results likely stem from differences among studies in the duration and exposure distance, as well as the species of animal used. This report was undertaken to review the existing research discussing the effects of RF-EMR on the DNA integrity of mammalian spermatozoa.

3.
J Cell Mol Med ; 28(2): e18052, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041559

RESUMEN

Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-ß) is involved in the pathogenesis of fibrosis. It has been shown that TGF-ß is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-ß/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta , Animales , Factor de Crecimiento Transformador beta/metabolismo , Antioxidantes/farmacología , Fibrosis , Inflamación , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
4.
Environ Pollut ; 336: 122411, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37598936

RESUMEN

Due to the increasing use of smart mobile phones, the impact of radiofrequency electromagnetic radiation (RF-EMR) on reproductive health has become a serious concern. This study investigated the effect of mobile phone RF-EMR with frequency 900-1800 MHZ on the mouse embryo morphokinetics and genotoxic effect in laboratory conditions. After ovarian stimulation in mice, the MII oocytes were collected and underwent by in vitro fertilization (IVF) method. The generated zygotes were divided into control and exposed groups. Then, the zygotes with 30 min of exposure to mobile phone RF-EMR, and the control zygotes without exposure, were incubated in the time-lapse for 5 days. The intracellular reactive oxygen species (ROS) level, morphokinetic, embryo viability rate, and Gene expression were evaluated. Exposure of zygotes to RF-EMR by inducing ROS caused a significant decrease in blastocyst viability (87.85 ± 2.86 versus 94.23 ± 2.44), delay in cleavage development (t3-t12) and also increased the time (in hours) to reach the blastocyst stage (97.44 ± 5.21 versus 92.56 ± 6.7) compared to the control group. A significant increase observed in mRNA levels of Hsp70 in exposed animals; while Sod gene expression showed a significant down-regulation in this group compared to the controls, respectively. However, there was no significant change in the transcript level of proapoptotic and antiapoptotic genes in embryos of the exposed group compared to the controls. RF-EMR emitted by mobile phone with a frequency of 900-1800 MHZ, through inducing the production of ROS and oxidative stress, could negatively affect the growth and development as well as the transcript levels of oxidative stress associated genes in the preimplantation embryos of mice.


Asunto(s)
Teléfono Celular , Estrés Oxidativo , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Radiación Electromagnética , Apoptosis , Blastocisto/metabolismo
5.
Clin Exp Reprod Med ; 50(2): 78-85, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258100

RESUMEN

OBJECTIVE: Reactive oxygen species (ROS) are produced during cryopreservation of human sperm and impair sperm function. Antioxidant compounds, such as fennel and purslane, reduce the damaging effects of ROS. This study aimed to evaluate motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), intracellular ROS, and DNA damage to determine the optimum concentrations of hydroalcoholic extracts of fennel and purslane for human spermatozoa cryopreservation. METHODS: Twenty human sperm samples were used and divided into seven equal groups consisting of fennel hydroalcoholic extract (5, 10, and 15 mg/L), purslane hydroalcoholic extract (25, 50, and 100 mg/L), and no additive. RESULTS: Supplementation of 25 mg/L and 50 mg/L purslane extract and 10 mg/L fennel extract in cryopreservation extender significantly increased the motility and PMI of sperm with a significant reduction in intracellular ROS compared to control groups (p<0.05). A 50 mg/L concentration of purslane extract elevated progressive motility and MMP compared to the control group (p<0.05). No significant differences were seen for motion patterns and DNA damage of frozen-thawed human sperm in extender containing these extracts. CONCLUSION: The results showed that supplementation of 50 mg/L purslane extract and 10 mg/L fennel extract in semen cryopreservation extender has the potential to decrease intracellular ROS and subsequently elevate the motility and PMI of human sperm.

6.
Clin Exp Reprod Med ; 50(2): 86-93, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258101

RESUMEN

OBJECTIVE: Given the destructive effects of oxidative stress on sperm structure, this study was conducted to investigate the antioxidant effects of different concentrations of Ceratonia siliqua plant extract on human sperm parameters after the freezing-thawing process. METHODS: A total of 20 normozoospermic samples were frozen. Each sample was divided into two control groups (fresh and cryopreservation) and three cryopreservation experimental groups (containing C. siliqua extract at concentrations of 20, 30, and 40 µg/mL in the freezing extender). Motility, intracellular levels of reactive oxygen species (ROS), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), viability, and acrosome reaction parameters were evaluated. RESULTS: Statistical analysis showed that the highest motility, viability, and PMI were associated with the 20 µg/mL concentration of C. siliqua extract. At all concentrations, intracellular ROS levels were significantly lower and the levels of MMP and the acrosome reaction were significantly higher than in the cryopreservation control group (p≤0.05). CONCLUSION: C. siliqua extract supplements at concentrations of 20, 30, and 40 µg/mL improved sperm motility, viability, PMI, MMP, intracellular ROS, and the acrosome reaction.

7.
Clin Exp Reprod Med ; 48(4): 316-321, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34875739

RESUMEN

OBJECTIVE: Amino acids can protect sperm structure in cryopreservation due to their antioxidant properties. Therefore, the present study aimed to investigate the protective effect of L-carnitine (LC) and N-acetyl cysteine (NAC) on motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA damage, and human sperm intracellular reactive oxygen species (ROS) during vitrification. METHODS: Twenty normal human sperm samples were examined. Each sample was divided into six equal groups: LC (1 and 10 mM), NAC (5 and 10 mM), and cryopreserved and fresh control groups. RESULTS: The groups treated with LC and NAC showed favorable findings in terms of motility parameters, DNA damage, and MMP. Significantly higher levels of intracellular ROS were observed in all cryopreserved groups than in the fresh group (p≤0.05). The presence of LC and NAC at both concentrations caused an increase in PMI, MMP, and progressive motility parameters, as well as a significant reduction in intracellular ROS compared to the control group (p≤0.05). The concentrations of the amino acids did not show any significant effect. CONCLUSION: LC and NAC are promising as potential additives in sperm cryopreservation.

8.
Andrologia ; 53(1): e13870, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33215743

RESUMEN

Assuming the adverse effects of reactive oxygen species (ROS) on sperm function, this study was conducted to assess the effects of cysteine and glutamine as effective antioxidants on human sperm parameters under vitrification. Twenty normozoospermic samples were used. The samples were subjected to a vitrification process and cysteine (5 and 10 mM) and glutamine (10 and 15 mM). The sperm motility parameters, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI), DNA damage and intracellular ROS damage were assessed for each sample. Statistical analyses showed that motility, mitochondrial membrane potential and DNA damage decreased in the vitrified groups with cysteine 5, 10 mM and glutamine 10, 15 mM separately. Also intracellular ROS increased significantly compared to the fresh group (p < .05). No significant differences were observed for PMI compared with the fresh group (p > .05). Supplementation of cysteine and glutamine in both concentrations separately decreased intracellular ROS and DNA damage of spermatozoa with significant increase in PMI, MMP and progressive motility compared to vitrified control group (p < .05). The results showed no significant effect of a specific concentration in cysteine and glutamine on sperm parameters compared to other concentrations. Both amino acids have the potential to improve the harmful effects of freezing on sperm parameters.


Asunto(s)
Glutamina , Preservación de Semen , Criopreservación , Cisteína/farmacología , Humanos , Masculino , Motilidad Espermática , Espermatozoides , Vitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA