RESUMEN
The ionic and nutrient composition of mountain lakes recovering from atmospheric acidification is increasingly influenced by climate change (increasing air temperature and frequency of heavy rainfall events). We investigated the evolution of organic nitrogen (ON), dissolved organic carbon (DOC) and phosphorus (P) concentrations in alpine lakes in the Tatra Mountains (Central Europe) between 1993 and 2023, resulting from changes in climate and the ionic composition of atmospheric deposition. Our results suggest that the decreasing acidity of precipitation and the climatically induced increasing frequency of heavy rainfall events and air temperatures fluctuating around the freezing point have the potential to increase ON concentrations in alpine lakes despite decreasing deposition of inorganic N. The increasing ON involves its allochthonous and autochthonous sources: (1) increased co-export of ON with DOC from soils in dissolved organic matter due to less acidic precipitation and more frequent heavy rainfall events and (2) increased in-lake primary productivity (chlorophyll a) associated with higher P availability. Based on our previous studies, we hypothesize that P availability has increased due to (i) reduced adsorption of phosphate in precipitation to the metal hydroxides in the soil-adsorption complex as a result of increasing pH in precipitation and soil water and (ii) increased P production by weathering due to climate-induced increased mechanical erosion of rocks in unstable scree areas. The extent of these changes was related to the percentage cover of scree areas and meadow soils in the lake catchments. In addition, our results suggest that ON (besides chlorophyll a) may be a more sensitive indicator of increasing productivity of oligotrophic alpine lakes under changing air pollution and climate than generally low P concentrations and their poorly detectable trends.
RESUMEN
Assessments of biodiversity and ecosystem status can benefit from DNA metabarcoding as a means to streamline sample processing and specimen identification. Moreover, processing the fixation medium instead of the precious material introduces straightforward protocols that allow subsequent focus on certain organisms detected among the preserved specimens. In this study, we present a proof of concept via the analysis of freshwater invertebrate samples from the Tatra Mountain lakes (Slovakia). Besides highlighting a match between the lake-specific environmental conditions and the results of our fixative DNA metabarcoding, we observed an option to fine-tune the fixation time: to prefer two weeks over a day or a month. This effect emerged from the presence/absence of individual taxa rather than from coarse per-sample records of taxonomic richness, demonstrating that metabarcoding studies-and efforts to optimize their protocols-can use the robust metrics to explore even subtle trends. We also provide evidence that fixative DNA might better capture large freshwater species than terrestrial or meiofauna.
Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Lagos , Código de Barras del ADN Taxonómico/métodos , Animales , Ecosistema , Invertebrados/genética , Invertebrados/clasificación , ADN/genética , ADN/aislamiento & purificación , ADN/análisisRESUMEN
Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.
Asunto(s)
Chironomidae , Cambio Climático , Ríos , Animales , Chironomidae/fisiología , Frío , Distribución AnimalRESUMEN
Scree deposits in alpine catchments contain undeveloped till soils that are "hidden" between and under stones. These scree areas have no vegetation except for sparse lichen patches on stone surfaces, but the soils exhibit biological activity and active cycling of nitrogen (N), phosphorus (P), and organic carbon (C). We compared the chemical and biochemical properties of till soils in the scree areas (scree soils) with developed soils in alpine meadows (meadow soils) of 14 catchments in the alpine zone of the Tatra Mountains. The data showed that scree soils served as an important source of mobile P forms for waters in high elevation catchments. We then conducted a detailed soil survey focused on four selected alpine catchments with scree cover proportions > 30%. This study confirmed that scree soils have significantly higher concentrations of mobile P forms compared to meadow soils, and a high specific microbial activity directed towards the extraction of P with rapid turnover in the microbial biomass. The combination of these properties and the amounts of scree soils in high-elevation areas highlight their importance in overall biogeochemical P cycling in alpine catchments, and the terrestrial P export to receiving waters.
Asunto(s)
Ciclismo , Carbono , Biomasa , Fósforo , SueloRESUMEN
Forest areas infected by insects are increasing in Europe and North America due to accelerating climate change. A 2000-2020 mass budget study on major elements (C, N, P, Ca, Mg, K) in the atmosphere-plant-soil-water systems of two unmanaged catchments enabled us to evaluate changes in pools and fluxes related to tree dieback and long-term accumulation/losses during the post-glacial period. A bark-beetle outbreak killed >75 % of all trees in a mature mountain spruce forest in one catchment and all dead biomass was left on site. A similar forest in a nearby catchment was only marginally affected. We observed that: (1) the long-term (millennial) C and N accumulation in soils averaged 10-22 and 0.5-1.1 kg ha-1 yr-1, respectively, while losses of Ca, Mg, and K from soils ranged from 0.1 to 2.6 kg ha-1 yr-1. (2) Only <0.8 % and <1.5 % of the respective total C and N fluxes entering the soil annually from vegetation were permanently stored in soils. (3) The post-disturbance decomposition of dead tree biomass reduced vegetation element pools from 27 % (C) to 73 % (P) between 2004 and 2019. (4) Tree dieback decreased net atmospheric element inputs to the impacted catchment, and increased the leaching of all elements and gaseous losses of C (â¼2.3 t ha-1 yr-1) and N (â¼14 kg ha-1 yr-1). The disturbed catchment became a net C source, but â¼50 % of the N released from dead biomass accumulated in soils. (5) Despite the severe forest disturbance, the dissolved losses of Ca and Mg represented 52-58 % of their leaching from intact stands during the peaking atmospheric acidification from 1970 to 1990. (6) Disturbance-related net leaching of P, Ca, Mg, and K were 4, 69, 16, and 114 kg ha-1, respectively, which represented 7-38 % of the losses potentially related to sanitary logging and subsequent removal of the aboveground tree biomass.
RESUMEN
Bark beetle disturbances are a critical event in the life cycle of Norway spruce forests. However, our knowledge of their effects on ectomycorrhizal fungi (EMF), which play a key role in forest productivity and nutrient cycling, is still incomplete. Special attention has been paid to the dynamics and diversity of EMF communities in managed forests, but studies dealing with disturbed natural stands are underrepresented. We conducted a study in an unmanaged natural spruce forest in the Bohemian Forest (Czech Republic), which suffered severe forest dieback caused by bark beetle. Approximately a decade after the disturbance, the character of the forest structure in the study area (â¼60 ha, 41 study plots) ranged from sites with open canopy and sparse tree cover to areas with dense spruce regeneration to patches of closed-canopy forest. We found that relative EMF abundance in soils was positively related to surviving tree and regeneration density. The number of surviving trees also positively affected species EMF richness and tended to support preservation of late-successional EMF species. Our results suggest that trees that survive bark beetle disturbance are key for the fate of the EMF community in natural forests.
RESUMEN
Chemical reversal from acidification has been progressing in European freshwaters since the late 1980s, responding to successful control of atmospheric pollution by acidifying emissions. However, biological recovery is often delayed after improvements in water composition. We studied macroinvertebrate recovery from acidification in eight glacial lakes in the Bohemian Forest (central Europe) between 1999 and 2019. The chemical composition of these lakes reflects a complex of environmental changes, dominated by a very steep decline in acid deposition and, currently, by elevated nutrient leaching following climate-induced tree dieback within their catchments. Temporal trends in species richness, abundance, species traits and community composition were evaluated with regard to water chemistry, littoral habitat properties and fish colonisation. The results showed accelerated recovery of macroinvertebrates following two decades of gradual improvement in water composition and slowly progressing biological rehabilitation. We observed a significant increase in macroinvertebrate species richness and abundance, coupled with distinct changes in community composition, the extent of changes varying between lakes, reflecting different littoral habitat properties (vegetated vs. stony) and water chemistry. Overall, the communities shifted toward more specialised (grazers, filterers, and phytophilous species) and acid-tolerant taxa at the expense of detritivorous, eurytopic and acid-resistant taxa. Where fish reappeared, open-water taxa declined greatly. Compositional changes were likely driven by the combined effects of water chemistry reversal, rehabilitation of habitat conditions and fish colonisation. Despite favourable trends, communities in recovering lakes still lack several biotic elements, particularly less vagile, acid-sensitive taxa and specialised herbivores known from the regional species pool. It is expected that future progress in lake recovery will be further promoted or inhibited by stochastic colonisation or disturbance events.
Asunto(s)
Monitoreo del Ambiente , Lagos , Animales , Lagos/química , Monitoreo del Ambiente/métodos , Ecosistema , Peces , Agua , Concentración de Iones de Hidrógeno , InvertebradosRESUMEN
Quillworts (Isoëtes) represent highly specialized flora of softwater lakes, that is, freshwater ecosystems potentially sensitive to acidification. In this paper, we combine a review of previous studies and our new results to address unrecognized reproduction strategies of quillworts to overcome long-term environmental stresses. These strategies play an important role in the plant's ability to overcome atmospheric acidification of freshwaters, protecting the plants until their environment can recover. Environmental drivers of recovery of Isoëtes echinospora and I. lacustris were studied in two acidified lakes in the Bohemian Forest (Central Europe). Both populations survived more than 50 years of severe acidification, although they failed to recruit new sporelings. Their survival depended entirely on the resistance of long-living adult plants because the quillworts do not grow clonally. During the past two decades, a renewal of I. echinospora population inhabiting Plesné Lake has been observed, while no such renewal of I. lacustris, dwelling in Cerné Lake, was evident, despite similar changes in water composition occurring in both lakes undergoing advanced recovery from acidification. Our in vitro experiments revealed that the threshold acidity and toxic aluminium concentrations for sporeling survival and recruitment success differed between I. echinospora (pH ≤ 4.0 and ≥300 µg L-1 Al at pH 5) and I. lacustris (pH ≤ 5.0 and ≥100 µg L-1Al at pH 5). The higher sensitivity of I. lacustris to both stressors likely stems from its year-long germination period and underlines the risk of exposure to chronic or episodic acidification in recovering lakes. By contrast, the shorter germination period of I. echinospora (2-3 months) enables its faster and deeper rooting, protecting this quillwort from periodic acidification during the next snowmelt. Our study brings novel insights into widely discussed environmental issues related to the long-term degradation of softwater lakes, which represent important hotspots of pan-European biodiversity and conservation efforts.
RESUMEN
Alpine meadows are strongly affected by climate change. Increasing air temperature prolongs the growing season and together with changing precipitation patterns alters soil temperature during winter. To estimate the effect of climate change on soil nutrient cycling, we conducted a field experiment. We transferred undisturbed plant-soil mesocosms from two wind-exposed alpine meadows at ~2100 m a.s.l. to more sheltered plots, situated ~300-400 m lower in the same valleys. The annual mean air temperature was 2°C higher at the lower plots and soils that were normally frozen at the original plots throughout winters were warmed to ~0°C due to the insulation provided by continuous snow cover. After two years of exposure, we analyzed the nutrient content in plants, and changes in soil bacterial community, decomposition, mineralization, and nutrient availability. Leaching of N and P from the soils was continuously measured using ion-exchange resin traps. Warming of soils to ~0°C during the winter allowed the microorganisms to remain active, their metabolic processes were not restricted by soil freezing. This change accelerated nutrient cycling, as evidenced by increased soil N and P availability, their higher levels in plants, and elevated leaching. In addition, root exudation and preferential enzymatic mining of P over C increased. However, any significant changes in microbial biomass, bacterial community composition, decomposition rates, and mineralization during the growing season were not observed, suggesting considerable structural and functional resilience of the microbial community. In summary, our data suggest that changes in soil temperature and snow cover duration during winter periods are critical for altering microbially-mediated processes (even at unchanged soil microbial community and biomass) and may enhance nutrient availability in alpine meadows. Consequently, ongoing climate change, which leads to soil warming and decreasing snow insulation, has a potential to significantly alter nutrient cycling in alpine and subalpine meadows compared to the current situation and increase the year-on-year variability in nutrient availability and leaching.
Asunto(s)
Pradera , Suelo , Cambio Climático , Ecosistema , Plantas , Estaciones del Año , Nieve , Suelo/química , Microbiología del SueloRESUMEN
Forest damage by insect infestation directly affects the trees themselves, but also indirectly affects water quality via soil processes. The changes in water composition may undergo different pathways depending on site-specific characteristics and forest components, especially the proportion of coniferous and deciduous trees. Here, we test whether changes in forest components and the intensity of disturbance can predict the chemical properties of water outflow from affected lake catchments. Information about forest regeneration (a phase dominated by deciduous trees) and the proportions of damaged and healthy coniferous trees and treeless areas were obtained from satellite data. The four study catchments of Prásilské, Laka, Plesné, and Certovo lakes are geographically close and located in the same mountain range (Sumava Mts., Czech Republic) at similar altitude, but they differ in extents of forest disturbances and recoveries. The water quality measured at the lake catchment outflows differed, and better reflected the development of forest components and health than did meteorological (temperature and precipitation) or hydrological (discharge) variables. Several of the outflow properties (concentrations of inorganic aluminium, protons, potassium, calcium, magnesium, alkalinity, dissolved organic carbon (DOC), nitrate, and total phosphorus), responded catchment-specifically and with different delays to forest disturbance. The most pronounced differences occurred in DOC concentrations, which started to increase in the most disturbed Plesné and Laka catchments 7 and 6 years, respectively, after the peak in tree dieback, but did not increase significantly in the Prásilské catchment, which was disturbed several times during the last 3-4 decades. This study demonstrates an importance of extents of forest disturbances, the following changes in forest composition, and catchment-specific characteristics on water composition.
Asunto(s)
Bosques , Lagos , Hidrología , Suelo , ÁrbolesRESUMEN
Increased nitrogen (N) deposition rates over the past century have affected both North American and European mountain lake ecosystems. Ecological sensitivity of mountain lakes to N deposition varies, however, because chemical and biological responses are modulated by local watershed and lake properties. We evaluated predictors of mountain lake sensitivity to atmospheric N deposition across North American and European mountain ranges and included as response variables dissolved inorganic N (DIN = NNH4+ + NNO3-) concentrations and phytoplankton biomass. Predictors of these responses were evaluated at three different spatial scales (hemispheric, regional, subregional) using regression tree, random forest, and generalized additive model (GAM) analysis. Analyses agreed that Northern Hemisphere mountain lake DIN was related to N deposition rates and smaller scale spatial variability (e.g., regional variability between North American and European lakes, and subregional variability between mountain ranges). Analyses suggested that DIN, N deposition, and subregional variability were important for Northern Hemisphere mountain lake phytoplankton biomass. Together, these findings highlight the need for finer-scale, subregional analyses (by mountain range) of lake sensitivity to N deposition. Subregional analyses revealed differences in predictor variables of lake sensitivity. In addition to N deposition rates, lake and watershed features such as land cover, bedrock geology, maximum lake depth (Zmax), and elevation were common modulators of lake DIN. Subregional phytoplankton biomass was consistently positively related with total phosphorus (TP) in Europe, while North American locations showed variable relationships with N or P. This study reveals scale-dependent watershed and lake characteristics modulate mountain lake ecological responses to atmospheric N deposition and provides important context to inform empirically based management strategies.
RESUMEN
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003-2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO42- more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca2+ and HCO3-, while S-bearing minerals likely contributed to lake water SO42- and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
Asunto(s)
Lagos , Suelo , Cambio Climático , Reproducibilidad de los Resultados , NieveRESUMEN
Surface water browning, the result of increasing concentrations of dissolved organic matter (DOM), has been widespread in northern ecosystems in recent decades. Here, we assess a database of 426 undisturbed headwater lakes and streams in Europe and North America for evidence of trends in DOM between 1990 and 2016. We describe contrasting changes in DOM trends in Europe (decelerating) and North America (accelerating), which are consistent with organic matter solubility responses to declines in sulfate deposition. While earlier trends (1990-2004) were almost entirely related to changes in atmospheric chemistry, climatic and chemical drivers were equally important in explaining recent DOM trends (2002-2016). We estimate that riverine DOM export from northern ecosystems increased by 27% during the study period. Increased summer precipitation strengthened upward dissolved organic carbon trends while warming apparently damped browning. Our results suggest strong but changing influences of air quality and climate on the terrestrial carbon cycle, and on the magnitude of carbon export from land to water.
RESUMEN
During recent decades, increasing anthropogenic activities have affected natural ionic composition, including the strongest and most common relationship between ionic concentrations in the majority of natural global freshwaters, i.e., the Ca2+-ANC (acid neutralizing capacity) equilibrium. Using long-term monitoring data and MAGIC modelling, we evaluated effects of major present environmental stressors (synthetic fertilizers, liming, acidic deposition, forest disturbances, and climate change) on the Ca2+-ANC equilibrium. We evaluated the effects for three different types of terrestrial ecosystems, a circumneutral lowland agricultural catchment, two acid sensitive mountain forest catchments differing in forest health, and one acid sensitive alpine catchment. All catchments are in a region with the world-largest changes in fertilizing rates and acidic deposition in the 20th century, with increasing impacts until the late 1980s, and their subsequent abrupt, dramatic decreases. These strong changes resulted in a substantial disruption, followed by continuing re-establishment of the Ca2+-ANC relationship in all study waters. The shape of the disruption and the following re-establishment of its new value were dependent on the intensity, duration, and combination of stressors, as well as on catchment characteristics (bedrock composition, soil amount and composition, vegetation status, and hydrology). We conclude that a new equilibrium may deviate from its natural value due to the (1) legacy of fertilizing, acidic deposition and liming, affecting the soil Ca2+ pools, (2) forest disturbances and management practices, and (3) climate change.
RESUMEN
Hydrological and microclimatic changes after insect-induced tree dieback were evaluated in an unmanaged central European mountain (Plesné, PL) forest and compared to climate-related changes in a similar, but almost intact (Certovo, CT) control forest during two decades. From 2004 to 2008, 93% of Norway spruce trees were killed by a bark beetle outbreak, and the entire PL area was left to subsequent natural development. We observed that (1) climate-related increases in daily mean air temperature (2â¯m above ground) were 1.6 and 0.5⯰C on an annual and growing season basis, respectively, and an increase in daily mean soil temperature (5â¯cm below ground) was 0.9⯰C during growing seasons at the CT control from 2004 to 2017; (2) daily mean soil and air temperatures increased by 0.7-1.2⯰C on average more at the disturbed PL plots than in the healthy forest; (3) water input to soils increased by 20% but decreased by 17% at elevations of 1122 and 1334â¯m, respectively, due to decreased occult deposition to, and evaporation from, canopies after tree dieback; (4) soil moisture was 5% higher on average (but up to 17% higher in dry summer months) in the upper PL soil horizons for 5-6â¯years following the tree dieback; (5) run-off from the PL forest ~6% (~70â¯mmâ¯yr-1) increased relatively to the CT forest (but without extreme peak flows and erosion events) after tree dieback due to the ceased transpiration of dead trees and elevated water input to soils; and (6) relative air humidity was 4% lower on average at disturbed plots than beneath living trees. The rapid tree regeneration during the decade following tree dieback resulted in a complete recovery in soil moisture, a slow recovery of discharge and air humidity, but a still insignificant recovery in air and soil temperatures.
Asunto(s)
Microclima , Árboles , Bosques , Hidrología , Noruega , SueloRESUMEN
We studied photochemically induced precipitation of rare-earth elements (REEs) in water from a tributary to Plesné Lake and a tributary to Jirická Pond, Czech Republic. Both tributaries had high concentrations of dissolved organic matter (â¼1.8 mmol C L-1). Filtered (0.2 µm) samples were exposed to artificial solar radiation of 350 W m-2 for 48 to 96 h, corresponding to 3 to 6 days of natural solar radiation in summer at the sampling locations. Experiments were performed with altered and unaltered pH ranging from 3.8 to 6.0. The formation of particulate REEs occurred in all exposed samples with the fastest formation observed at the original pH. The formation of particulate metals continued in irradiated samples after the end of irradiation, suggesting that photochemically induced reactions and/or continuing precipitation continue in darkness or in deeper water due to mixing. Results were compared with paleolimnological records in the Plesné Lake sediment. At pH 5.0, the photochemically induced sediment flux was 3509 nmol m-2 y-1 for Ce, corresponding to 42% of the REEs' annual sediment flux in recent sediment layers. Combining the formation rates obtained in the laboratory irradiation experiments and known 1 day incident solar radiation enabled the estimation of a possible REE sediment flux. For Plesné Lake, the photochemically induced formation of particulate REEs explained 10-44% of the REE concentrations in the upper sediment layers. Observed photochemically induced sequestration of REEs into sediments can explain a significant part of the REEs' history in the Holocene sediment.
Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , República Checa , Monitoreo del Ambiente , Sedimentos Geológicos , LagosRESUMEN
Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.
RESUMEN
We conducted an extensive screening of forest soils in the whole area of the Czech Republic to determine their degree of acidification and potential degradation. Soils were sampled at 480 forest sites (in a 7â¯×â¯7 km grid covering the entire Czech Republic) from the upper 30-cm layer and included both organic and mineral horizons. Based on values of water extractable pH (pHH2O), cation exchange capacity (CEC) and base saturation (BS), soils were divided into three categories by their degree of acidity, i.e., non-or-low-acidic (NLA; pHH2Oâ¯≥â¯4.2, CECâ¯≥â¯150â¯meqâ¯kg-1, BSâ¯≥â¯15%), moderately acidic (MA; at least one parameter is below the limits for the NLA category), and strongly acidic (SA; all three parameters are below the limits for the NLA category). Only 11% of sampled soils were classified in the NLA category, while 58% and 31% belonged to the MA and SA category, respectively. The SA soils had median values of pHH2O, CEC, and BS of 3.9, 102â¯meqâ¯kg-1, and 10.2%, respectively, and their molar ratios between exchangeable concentrations of base cations to aluminum (BCex/Alex) were <0.6, indicating a high likelihood of adverse Al effects on plant growth. Moreover, the SA soils exhibited lowest ratios between extractable nutrients (base cations and phosphorus) and dissolved N (DN), indicating other than N limitation of plant growth at these sites, and elevated risks of reactive N leaching. In contrast, the NLA soils had median values of pHH2O, CEC, BS and BCex/Alex of 5.4, 199â¯meqâ¯kg-1, 95%, and 0.7 respectively. For these soils, neither adverse effects of Al nor elevated N losses are likely.
RESUMEN
We evaluated a 14-year trend (2003-2017) in mercury (Hg) concentrations and fluxes in six litterfall categories (needles, bark, twigs, cones, lichen, and a mixture of unidentified fragments) at six research plots situated in two central European unmanaged mountain forest stands, dominated by mature Norway spruce. One of the stands (catchment of Plesné Lake, PL) was infested by bark beetle and all mature spruces died at three of four research plots during the study. One PL plot and two plots in the second stand (catchment of Certovo Lake, CT) were intact and used as a control. At the intact plots, the litterfall Hg deposition averaged 45 and 32⯵g/m2/year in the PL and CT catchments, respectively, while bulk precipitation Hg deposition was an order of magnitude lower (2.6⯵g/m2/year). In the individual litter categories, Hg concentrations averaged 223, 195, 126, 81, 79 and 30⯵g/kg in lichen, unidentified fragments, bark, twigs, needles and cones, respectively. As a result of decreasing European Hg emissions, Hg concentrations in most litter categories decreased from 2003 to 2017. Consequently, the litter-associated Hg flux to the forest floor decreased from 66 to 23⯵g/m2/year during 2003-2017. The litterfall mass fluxes exhibited no trends at the intact plots. In contrast, the litter-associated Hg flux increased 5-fold after tree dieback due to elevated litterfall, averaging 218⯵g/m2/year Hg at the PL infested plots during 2004-2009. The relative contribution of individual litter categories to the total Hg flux shifted from needle to bark and twig dominance. Starting in 2010, Hg flux decreased to pre-disturbance levels for the following decade. The tree mortality in the PL catchment provided a unique opportunity to evaluate changes in litter-associated Hg fluxes to the forest floor during and after natural tree dieback.
Asunto(s)
Contaminantes Ambientales/análisis , Mercurio/análisis , Picea/química , Hojas de la Planta/química , Gorgojos/fisiología , Animales , República Checa , Monitoreo del Ambiente , Bosques , Dinámica PoblacionalRESUMEN
In situ experiments were done to determine the effects of the photochemical degradation of dissolved organic matter (DOM) and subsequent formation of particulate matter on dissolved phosphorus (P) concentrations in surface waters. Filtered (1.2 or 0.4 µm) headwaters (DOM of 8.1-26 mg L-1; P of 22-43 µg L-1) were exposed to solar radiation in quartz bottles located 5 cm below the water surface for 7-10 days. Dark controls were wrapped in aluminum foil. After incubation, particulate organic carbon (POC) and particulate phosphorus (PP) were determined in both the filtrate and newly formed particles. The results revealed increasing concentrations of PP and POC in exposed samples with increasing exposure time (cumulative irradiation energy). At the end of experiments, PP concentrations were from 5 to 20 µg L-1 in the exposed samples. Based on an enumeration of bacteria in the samples, we estimated the contribution of biotic and abiotic processes to the PP production. The abiotic PP formation ranged from 56 to 83% and 50-95% of the total PP in the exposed and control samples, respectively. The remainder was assumed to be bacterial P uptake. Despite the overlapping intervals, biotic and abiotic PP productions were usually higher in exposed samples than in controls. The PP and POC production was affected by the properties of DOM, such as its humic content and freshness index. We hypothesize that the observed immobilization of dissolved P in bacteria and on photochemically-formed particles can contribute to a P limitation of primary production in headwater environments that receive waters rich in soil DOM.