Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(11): 656, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39379735

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) is a promising technique for the readout of immunochemical assays utilizing indirect detection of labels (Tag-LIBS), typically based on nanoparticles. We have previously demonstrated that Tag-LIBS immunoassay employing yttrium-based photon-upconversion nanoparticles (UCNPs) can reach sensitivity similar to commonly used enzyme and fluorescence immunoassays. In this study, we report on further increasing the sensitivity of UCNP-based Tag-LIBS immunoassay by employing magnetic microbeads (MBs) as the solid phase in the determination of cancer biomarker prostate-specific antigen. Due to the possibility of analyte preconcentration, MBs enabled achieving a limit of detection (LOD) of 4.0 pg·mL-1, representing two orders of magnitude improvement compared with equivalent microtiter plate-based assay (LOD of 460 pg·mL-1). In addition, utilizing MBs opens up the possibility of an internal standardization of the LIBS readout by employing iron spectral lines, which improves the assay robustness by compensating for LIBS signal fluctuations and bead-bound immunocomplexes lost throughout the washing steps. Finally, the practical applicability of the technique was confirmed by the successful analysis of clinical samples, showing a strong correlation with the standard electrochemiluminescence immunoassay. Overall, MB-based Tag-LIBS was confirmed as a promising immunoassay approach, combining fast readout, multiplexing possibilities, and high sensitivity approaching upconversion luminescence scanning while avoiding the requirement of luminescence properties of labels.


Asunto(s)
Rayos Láser , Límite de Detección , Antígeno Prostático Específico , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/inmunología , Antígeno Prostático Específico/sangre , Humanos , Inmunoensayo/métodos , Análisis Espectral/métodos , Itrio/química , Itrio/efectos de la radiación , Masculino , Microesferas
2.
Talanta ; 279: 126651, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121552

RESUMEN

Correlative imaging of cutaneous tumors provides additional information to the standard histopathologic examination. However, the joint progress in the establishment of analytical techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in clinical practice is still limited. Their combination provides complementary information as it is also shown in our study in terms of major biotic (Ca, Mg, and P) and trace (Cu and Zn) elements. To elucidate changes in the elemental composition in tumors, we have compiled a set of malignant tumors (Squamous Cell Carcinoma, Basal Cell Carcinoma, Malignant Melanoma, and Epithelioid Angiosarcoma), one benign tumor (Pigmented Nevus) and one healthy-skin sample. The data processing was based on a methodological pipeline involving binary image registration and affine transformation. Thus, our paper brings a feasibility study of a practical methodological concept that enables us to compare LIBS and LA-ICP-MS results despite the mutual spatial distortion of original elemental images. Moreover, we also show that LIBS could be a sufficient pre-screening method even for a larger number of samples according to the speed and reproducibility of the analyses. Whereas LA-ICP-MS could serve as a ground truth and reference technique for preselected samples.


Asunto(s)
Neoplasias Cutáneas , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Humanos , Terapia por Láser , Melanoma/diagnóstico por imagen , Melanoma/patología , Espectrometría de Masas/métodos , Carcinoma Basocelular/diagnóstico por imagen , Oligoelementos/análisis , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Análisis Espectral/métodos , Nevo Pigmentado/diagnóstico por imagen , Rayos Láser
3.
Anal Chim Acta ; 1310: 342663, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811130

RESUMEN

The diagnosis of malignant melanoma, often an inconspicuous but highly aggressive tumor, is most commonly done by histological examination, while additional diagnostic methods on the level of elements and molecules are constantly being developed. Several studies confirmed differences in the chemical composition of healthy and tumor tissue. Our study presents the potential of the LIBS (Laser-Induced-Breakdown Spectroscopy) technique as a diagnostic tool in malignant melanoma (MM) based on the quantitative changes in elemental composition in cancerous tissue. Our patient group included 17 samples of various types of malignant melanoma and one sample of healthy skin tissue as a control. To achieve a clear perception of results, we have selected two biogenic elements (calcium and magnesium), which showed a dissimilar distribution in cancerous tissue from its healthy surroundings. Moreover, we observed indications of different concentrations of these elements in different subtypes of malignant melanoma, a hypothesis that requires confirmation in a more extensive sample set. The information provided by the LIBS Imaging method could potentially be helpful not only in the diagnostics of tumor tissue but also be beneficial in broadening the knowledge about the tumor itself.


Asunto(s)
Rayos Láser , Magnesio , Melanoma , Neoplasias Cutáneas , Análisis Espectral , Humanos , Melanoma/patología , Melanoma/diagnóstico por imagen , Melanoma/diagnóstico , Melanoma/química , Análisis Espectral/métodos , Magnesio/análisis , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/diagnóstico por imagen , Calcio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA