Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 280, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348402

RESUMEN

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

2.
Sci Rep ; 7(1): 12144, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939883

RESUMEN

Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast "PEARL" laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities.

3.
Phys Rev Lett ; 109(24): 245008, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23368338

RESUMEN

A new method of generation of high-energy highly charged ion beams is proposed. The method is based on the interaction of petawatt circularly polarized laser pulses with high-Z compound targets consisting of two species of different charge-to-mass ratio. It is shown that highly charged ions produced by field ionization can be accelerated up to tens of MeV/u with ion (actually with Z ≤ 25) beam parameters like density and total charge inaccessible in conventional accelerators. A possibility of further ionization of the accelerated ion bunches in foil is also discussed.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046403, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22181279

RESUMEN

The generation of ultrastrong attosecond pulses through laser-plasma interactions offers the opportunity to surpass the intensity of any known laboratory radiation source, giving rise to new experimental possibilities, such as quantum electrodynamical tests and matter probing at extremely short scales. Here we demonstrate that a laser irradiated plasma surface can act as an efficient converter from the femto- to the attosecond range, giving a dramatic rise in pulse intensity. Although seemingly similar schemes have been described in the literature, the present setup differs significantly from the previous attempts. We present a model describing the nonlinear process of relativistic laser-plasma interaction. This model, which is applicable to a multitude of phenomena, is shown to be in excellent agreement with particle-in-cell simulations. The model makes it possible to determine a parameter region where the energy conversion from the femto- to the attosecond regime is maximal. Based on the study we propose a concept of laser pulse interaction with a target having a groove-shaped surface, which opens up the potential to exceed an intensity level of 10(26) W/cm(2) and observe effects due to nonlinear quantum electrodynamics with upcoming laser sources.

5.
Phys Rev Lett ; 102(18): 184801, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19518877

RESUMEN

The regime of multicascade proton acceleration during the interaction of a 10(21)-10(22) W/cm2 laser pulse with a structured target is proposed. The regime is based on the electron charge displacement under the action of laser ponderomotive force and on the effect of relativistically induced slab transparency which allows realization of the idea of multicascade acceleration. It is shown that a target comprising several thin foils properly spaced apart can optimize the acceleration process and give at the output a quasi-monoenergetic beam of protons with energies up to hundreds of MeV with an energy spread of just a few percent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA