Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Chem Sci ; 13(13): 3674-3687, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35432906

RESUMEN

We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (Mpro) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-µM for the final covalent compound (IC50 = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand-protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of Mpro inhibitors towards low nM affinities.

2.
mBio ; 7(2): e00331, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27025253

RESUMEN

UNLABELLED: Following phagocytosis, microbes are exposed to an array of antimicrobial weapons that include reactive oxygen species (ROS) and cationic fluxes. This is significant as combinations of oxidative and cationic stresses are much more potent than the corresponding single stresses, triggering the synergistic killing of the fungal pathogenCandida albicansby "stress pathway interference." Previously we demonstrated that combinatorial oxidative plus cationic stress triggers a dramatic increase in intracellular ROS levels compared to oxidative stress alone. Here we show that activation of Cap1, the major regulator of antioxidant gene expression inC. albicans, is significantly delayed in response to combinatorial stress treatments and to high levels of H2O2 Cap1 is normally oxidized in response to H2O2; this masks the nuclear export sequence, resulting in the rapid nuclear accumulation of Cap1 and the induction of Cap1-dependent genes. Here we demonstrate that following exposure of cells to combinatorial stress or to high levels of H2O2, Cap1 becomes trapped in a partially oxidized form, Cap1(OX-1) Notably, Cap1-dependent gene expression is not induced when Cap1 is in this partially oxidized form. However, while Cap1(OX-1)readily accumulates in the nucleus and binds to target genes following high-H2O2stress, the nuclear accumulation of Cap1(OX-1)following combinatorial H2O2and NaCl stress is delayed due to a cationic stress-enhanced interaction with the Crm1 nuclear export factor. These findings define novel mechanisms that delay activation of the Cap1 transcription factor, thus preventing the rapid activation of the stress responses vital for the survival ofC. albicanswithin the host. IMPORTANCE: Combinatorial stress-mediated synergistic killing represents a new unchartered area in the field of stress signaling. This phenomenon contrasts starkly with "stress cross-protection," where exposure to one stress protects against subsequent exposure to a different stress. Previously we demonstrated that the pathogenCandida albicansis acutely sensitive to combinations of cationic and oxidative stresses, because the induction of H2O2-responsive genes is blocked in the presence of cationic stress. We reveal that this is due to novel mechanisms that delay activation of the Cap1 AP-1-like transcription factor, the major regulator of the H2O2-induced regulon. Cap1 becomes trapped in a partially oxidized form following simultaneous exposure to oxidative and cationic stresses. In addition, cationic stress promotes the interaction of Cap1 with the Crm1 nuclear export factor, thus inhibiting its nuclear accumulation. These mechanisms probably explain the potency of neutrophils, which employ multiple stresses to kill fungal pathogens.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Candida albicans/inmunología , Candida albicans/fisiología , Cationes/toxicidad , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fagocitosis , Especies Reactivas de Oxígeno/toxicidad , Estrés Fisiológico , Regulación Fúngica de la Expresión Génica , Presión Osmótica , Estrés Oxidativo , Procesamiento Proteico-Postraduccional
3.
Biomolecules ; 5(1): 142-65, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25723552

RESUMEN

Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen.


Asunto(s)
Candida albicans/metabolismo , Interacciones Huésped-Patógeno , Estrés Oxidativo , Candida albicans/citología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Humanos , Inmunidad Innata , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA