Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Proteomics ; 282: 104923, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37160224

RESUMEN

Wheat and barley genera represent a wide range of genotypes from Triticeae group grown around the globe. The broad plasticity of Triticeae phenotypes mirrors the robustness of their genomes revealing a high level of gene homeology. Publication and annotation of the reference genome sequences for spring barley Morex and Chinese Spring wheat represents an important milestone enabling the researchers to precisely identify and annotate nearly all proteins. Due to the broad range of environments used for wheat and barley cultivation and their economical importance, proteomic studies focused on their responses to environmental stresses including combined stress treatments. Most of the Triticeae stress proteomics studies are comparative ones aimed at determination of differentially abundant proteins (DAPs) between two or more genotypes with contrasting stress tolerance. Studies focused on subcellular fractions and protein posttranslational modifications (PTMs) are still relatively rare although PTMs play a crucial role in modulation of protein biological function. Functional and interactomics studies are needed although gene homeology and the resulting protein functional redundancy practically excludes the utilization of knock-out mutants. The alternatives could represent either gene overexpression in a heterologous system such as A. thaliana or transient posttranscriptional gene silencing using RNAi. Publication of complete reference genome sequences together with novel technological approaches such as pQTL mapping boost the Triticeae proteomics studies not only to provide data but also to contribute to designing novel genotypes with improved adaptations to ever changing environments.


Asunto(s)
Hordeum , Triticum , Triticum/genética , Hordeum/genética , Proteómica , Grano Comestible , Poaceae
2.
Front Plant Sci ; 13: 1005755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452089

RESUMEN

In the field, plants usually have to face the combined effects of abiotic and biotic stresses. In our study, two spring wheat cultivars-Septima and Quintus-were subjected to three water regimes [70%, 50%, and 40% soil water capacity (SWC)], aphid (Metopolophium dirhodum) infestation, or the combination of both stresses, i.e., water deficit (50%, 40% SWC) and aphids. The study has a 2 × 3 × 2 factorial design with three biological replicates. In the present study, the results of proteomic analysis using 2D-DIGE followed by MALDI-TOF/TOF protein identification are presented. Water deficit but also aphid infestation led to alterations in 113 protein spots including proteins assigned to a variety of biological processes ranging from signaling via energy metabolism, redox regulation, and stress and defense responses to secondary metabolism indicating a long-term adaptation to adverse conditions. The absence of specific proteins involved in plant response to herbivorous insects indicates a loss of resistance to aphids in modern wheat cultivars during the breeding process and is in accordance with the "plant vigor hypothesis." Septima revealed enhanced tolerance with respect to Quintus as indicated by higher values of morphophysiological characteristics (fresh aboveground biomass, leaf length, osmotic potential per full water saturation) and relative abundance of proteins involved in mitochondrial respiration and ATP biosynthesis.

3.
Foods ; 11(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35206043

RESUMEN

Current clinical studies confirm that the consumption of oats for people suffering from celiac disease is safe. Some studies have confirmed different levels of immunoreactive gluten epitopes of oats in different cultivars, while others explain these differences due to contamination with gluten-rich species or as random cross-reactivity ELISA of homologous oat epitopes with anti-wheat gliadin antibodies. The aim of our two-year study was therefore to map cross-reactive oat epitopes in a set of 132 oat cultivars using a G12-based ELISA kit. The results were focused on the varietal and annual level of cross-reactivity (interference) of avenin epitopes with the G12 antibody on the identification of potential cultivars with significantly different interferences and assessing the degree of risk of possible false-contamination with external gluten. Although repeated evaluations confirmed high year-to-year variability (RSD ≥ 30%) in approximately 2/3 of the cultivars, the content of interfering avenin epitopes with G12 did not exceed the considered safe limit (20 mg·kg-1) for celiacs. At the same time, not only annual but, above all, significant cultivar dependences in the interference of avenins to the G12 antibody were demonstrated. Genetic dependence was further confirmed in connection with the proven avenin polymorphism as well as immunoblotting with the identification of interfering peptides with the G12 antibody in the 25 and 30 kDa regions. It was the occurrence of two bands around 30 kDa that predominantly occurred in oat cultivars with a relatively higher content of cross-reactive avenins (12-16 mg·kg-1). Due to the fact that the contents of interfering avenins ranged in several cultivars even over 16 mg·kg-1, the choice of a suitable oat cultivar may be crucial for gluten-free food producers, as it reduces the risk of a possible false-response of the commercial ELISA kits when checking the real-gluten contamination.

4.
Front Plant Sci ; 12: 793113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970290

RESUMEN

Proteins are directly involved in plant phenotypic response to ever changing environmental conditions. The ability to produce multiple mature functional proteins, i.e., proteoforms, from a single gene sequence represents an efficient tool ensuring the diversification of protein biological functions underlying the diversity of plant phenotypic responses to environmental stresses. Basically, two major kinds of proteoforms can be distinguished: protein isoforms, i.e., alterations at protein sequence level arising from posttranscriptional modifications of a single pre-mRNA by alternative splicing or editing, and protein posttranslational modifications (PTMs), i.e., enzymatically catalyzed or spontaneous modifications of certain amino acid residues resulting in altered biological functions (or loss of biological functions, such as in non-functional proteins that raised as a product of spontaneous protein modification by reactive molecular species, RMS). Modulation of protein final sequences resulting in different protein isoforms as well as modulation of chemical properties of key amino acid residues by different PTMs (such as phosphorylation, N- and O-glycosylation, methylation, acylation, S-glutathionylation, ubiquitinylation, sumoylation, and modifications by RMS), thus, represents an efficient means to ensure the flexible modulation of protein biological functions in response to ever changing environmental conditions. The aim of this review is to provide a basic overview of the structural and functional diversity of proteoforms derived from a single gene in the context of plant evolutional adaptations underlying plant responses to the variability of environmental stresses, i.e., adverse cues mobilizing plant adaptive mechanisms to diminish their harmful effects.

5.
Plants (Basel) ; 10(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923804

RESUMEN

Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.

6.
Plant Foods Hum Nutr ; 75(2): 131-141, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32133597

RESUMEN

Oats represent a promising alternative to small-grain cereals from Triticeae group (wheat, barley, rye) for persons suffering from any form of gluten intolerance, especially celiac disease (CD), since oat-specific prolamins avenins reveal generally lower gluten content and immunoreactivity. Recent studies on avenin molecular structure revealed large genetic variability in avenin sequences affecting the spectrum of gluten peptides produced by hydrolases in human digestive tract. The aim of the present review is to summarise recent knowledge obtained in laboratory studies focused on the effect of avenin-derived peptides on reactivity of crucial components of human immune system such as dendritic cells (DC) and T-cells. The other part of the review summarises the results of clinical studies with CD patients including oat products in their diet. Since different clinical studies revealed contradictory results regarding potential safety of oats for CD patients, the focus has to be directed at genetic variability in oat avenins. Identification of avenin isoforms with minimum CD immunoreactivity will open up ways leading to designing novel oat cultivars suitable for CD patients. Knowledge on immunoreactivity of gluten peptides together with breeding new oat cultivars revealing minimum avenin immunoreactivity with respect to CD as well as application of food processing technologies leading to gluten content reduction should result in development of gluten-free oats safe for celiacs.


Asunto(s)
Avena , Enfermedad Celíaca , Dieta Sin Gluten , Grano Comestible , Glútenes , Humanos
8.
Front Plant Sci ; 10: 7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761163

RESUMEN

Low temperatures represent a crucial environmental factor determining winter survival (WS) of barley and wheat winter-type varieties. In laboratory experiments, low temperatures induce an active plant acclimation response, which is associated with an enhanced accumulation of several stress-inducible proteins including dehydrins. Here, dehydrin accumulations in sampled wheat (WCS120 protein family, or WCS120 and WDHN13 transcripts) and barley (DHN5 protein) varieties grown in two locations for two winters were compared with the variety WS evaluated by a provocation wooden-box test. A high correlation between dehydrin transcripts or protein relative accumulation and variety WS score was found only in samples taken prior vernalization fulfillment, when high tolerant varieties accumulated dehydrins earlier and to higher level than less tolerant varieties, and the plants have not yet been vernalized. After vernalization fulfillment, the correlation was weak, and the apical development indicated that plants reached double ridge (DR) in barley or stayed before DR in wheat. Dehydrin proteins and transcripts can be thus used as reliable markers of wheat or barley variety winter hardiness in the field conditions; however, only at the beginning of winter, when the plants have not yet finished vernalization. In wheat, a higher correlation was obtained for the total amount of dehydrins than for the individual dehydrin proteins. HIGHLIGHTS: -More tolerant winter-type wheat and barley plants reveal higher threshold induction temperatures for dehydrin accumulation in comparison to less tolerant varieties. Thus, more tolerant winter cereals have higher dehydrin levels than the less tolerant ones upon the same ambient temperature in November samplings.-A significant correlation between dehydrin transcript/protein accumulation and winter survival was found in both winter wheat and winter barley plants in the field conditions, but only prior to vernalization fulfillment.

9.
Front Plant Sci ; 9: 122, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472941

RESUMEN

HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.

10.
J Proteomics ; 169: 112-124, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28713028

RESUMEN

Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, ß-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant.


Asunto(s)
Fusariosis , Fusarium/patogenicidad , Hordeum/química , Hordeum/microbiología , Proteoma/efectos de los fármacos , Tricotecenos/farmacología , Hordeum/efectos de los fármacos , Proteómica/métodos , Especificidad de la Especie
11.
J Proteomics ; 152: 188-205, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27838467

RESUMEN

The cultivar-dependent differences in Brassica napus L. seed yield are significantly affected by drought stress. Here, the response of leaf proteome to long-term drought (28days) was studied in cultivars (cvs): Californium (C), Cadeli (D), Navajo (N), and Viking (V). Analysis of twenty-four 2-D DIGE gels revealed 134 spots quantitatively changed at least 2-fold; from these, 79 proteins were significantly identified by MALDI-TOF/TOF. According to the differences in water use, the cultivars may be assigned to two categories: water-savers or water-spenders. In the water-savers group (cvs C+D), proteins related to nitrogen assimilation, ATP and redox homeostasis were increased under stress, while in the water-spenders category (cvs N+V), carbohydrate/energy, photosynthesis, stress related and rRNA processing proteins were increased upon stress. Taking all data together, we indicated cv C as a drought-adaptable water-saver, cv D as a medium-adaptable water-saver, cv N as a drought-adaptable water-spender, and cv V as a low-adaptable drought sensitive water-spender rapeseed. Proteomic data help to evaluate the impact of drought and the extent of genotype-based adaptability and contribute to the understanding of their plasticity. These results provide new insights into the provenience-based drought acclimation/adaptation strategy of contrasting winter rapeseeds and link data at gasometric, biochemical, and proteome level. SIGNIFICANCE: Soil moisture deficit is a real problem for every crop. The data in this study demonstrates for the first time that in stem-prolongation phase cultivars respond to progressive drought in different ways and at different levels. Analysis of physiological and proteomic data showed two different water regime-related strategies: water-savers and spenders. However, not only water uptake rate itself, but also individual protein abundances, gasometric and biochemical parameters together with final biomass accumulation after stress explained genotype-based responses. Interestingly, under a mixed climate profile, both water-use patterns (savers or spenders) can be appropriate for drought adaptation. These data suggest, than complete "acclimation image" of rapeseeds in stem-prolongation phase under drought could be reached only if these characteristics are taken, explained and understood together.


Asunto(s)
Brassica rapa/química , Sequías , Proteómica/métodos , Agua/metabolismo , Adaptación Fisiológica , Brassica rapa/fisiología , Electroforesis en Gel Bidimensional , Proteínas de Plantas/análisis , Estrés Fisiológico , Espectrometría de Masas en Tándem
12.
Front Plant Sci ; 7: 1154, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536311

RESUMEN

Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley H. marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defense-related proteins from late-embryogenesis abundant family, several chaperones from heat shock protein family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper and nascent polypeptide-associated complex families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H. vulgare indicate plant tissue damage as revealed by enhanced levels of proteins involved in proteasome-dependent protein degradation and proteins related to apoptosis. The results of proteomic analysis clearly indicate differential responses to high salinity and provide more profound insight into biological mechanisms underlying salinity response between two barley species with contrasting salinity tolerance.

13.
Front Plant Sci ; 7: 1958, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28083001

RESUMEN

Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.

14.
Int J Mol Sci ; 16(9): 20913-42, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26340626

RESUMEN

Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.


Asunto(s)
Adaptación Biológica , Productos Agrícolas/metabolismo , Proteoma , Proteómica , Estrés Fisiológico , Adaptación Biológica/genética , Biomarcadores , Productos Agrícolas/genética , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Estrés Fisiológico/genética
15.
Front Plant Sci ; 6: 479, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175745

RESUMEN

Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.

16.
Front Plant Sci ; 5: 343, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071816

RESUMEN

Dehydrins as a group of late embryogenesis abundant II proteins represent important dehydration-inducible proteins whose accumulation is induced by developmental processes (embryo maturation) as well as by several abiotic stress factors (low temperatures, drought, salinity). In the review, an overview of studies aimed at investigation of dehydrin accumulation patterns at transcript and protein levels as well as their possible functions in common wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare) plants exposed to various abiotic stress factors (cold, frost, drought, salinity) is provided. Possible roles of dehydrin proteins in an acquisition and maintenance of an enhanced frost tolerance are analyzed in the context of plant developmental processes (vernalization). Quantitative and qualitative differences as well as post-translational modifications in accumulated dehydrin proteins between barley cultivars revealing differential tolerance to drought and salinity are also discussed. Current knowledge on dehydrin role in wheat and barley response to major dehydrative stresses is summarized and the major challenges in dehydrin research are outlined.

17.
Front Plant Sci ; 5: 711, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566285

RESUMEN

Wheat (Triticum aestivum; T. durum) and barley (Hordeum vulgare) agricultural production is severely limited by various abiotic and biotic stress factors. Proteins are directly involved in plant stress response so it is important to study proteome changes under various stress conditions. Generally, both abiotic and biotic stress factors induce profound alterations in protein network covering signaling, energy metabolism (glycolysis, Krebs cycle, ATP biosynthesis, photosynthesis), storage proteins, protein metabolism, several other biosynthetic pathways (e.g., S-adenosylmethionine metabolism, lignin metabolism), transport proteins, proteins involved in protein folding and chaperone activities, other protective proteins (LEA, PR proteins), ROS scavenging enzymes as well as proteins affecting regulation of plant growth and development. Proteins which have been reported to reveal significant differences in their relative abundance or posttranslational modifications between wheat, barley or related species genotypes under stress conditions are listed and their potential role in underlying the differential stress response is discussed. In conclusion, potential future roles of the results of proteomic studies in practical applications such as breeding for an enhanced stress tolerance and the possibilities to test and use protein markers in the breeding are suggested.

18.
J Proteome Res ; 12(11): 4830-45, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24047233

RESUMEN

A proteomic response to cold treatment (4 °C) has been studied in crowns of a frost-tolerant winter wheat cultivar Samanta and a frost-sensitive spring wheat cultivar Sandra after short-term (3 days) and long-term (21 days) cold treatments. Densitometric analysis of 2-D differential in gel electrophoresis (2D-DIGE) gels has resulted in the detection of 386 differentially abundant protein spots, which reveal at least a two-fold change between experimental variants. Of these, 58 representative protein spots have been selected for MALDI-TOF/TOF identification, and 36 proteins have been identified. The identified proteins with an increased relative abundance upon cold in both growth habits include proteins involved in carbohydrate catabolism (glycolysis enzymes), redox metabolism (thioredoxin-dependent peroxidase), chaperones, as well as defense-related proteins (protein revealing similarity to thaumatin). Proteins exhibiting a cold-induced increase in the winter cultivar include proteins involved in regulation of stress response and development (germin E, lectin VER2), while proteins showing a cold-induced increase in the spring cultivar include proteins involved in restoration of cell division and plant growth (eIF5A2, glycine-rich RNA-binding protein, adenine phosphoribosyltransferase). These results provide new insights into cold acclimation in spring and winter wheat at the proteome level and enrich our previous work aimed at phytohormone dynamics in the same plant material.


Asunto(s)
Adaptación Biológica/fisiología , Frío , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Adaptación Biológica/genética , Análisis de Varianza , Análisis por Conglomerados , Biología Computacional , Densitometría , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Análisis de Componente Principal , Proteómica , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triticum/crecimiento & desarrollo , Triticum/metabolismo
19.
Int J Mol Sci ; 14(4): 8000-24, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23584021

RESUMEN

Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley.


Asunto(s)
Hordeum/fisiología , Proteínas de Plantas/fisiología , Aclimatación/fisiología , Clima Frío , Electroforesis en Gel Bidimensional , Mapeo Peptídico , Componentes Aéreos de las Plantas/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/aislamiento & purificación , Proteoma/aislamiento & purificación , Proteoma/fisiología , Estaciones del Año
20.
Int J Mol Sci ; 14(4): 6757-89, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23531537

RESUMEN

The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stress- and defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.


Asunto(s)
Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal , Proteómica , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA