Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38681506

RESUMEN

Background: Essential tremor patients may find that low alcohol amounts suppress tremor. A candidate mechanism is modulation of α6ß3δ extra-synaptic GABAA receptors, that in vitro respond to non-intoxicating alcohol levels. We previously found that low-dose alcohol reduces harmaline tremor in wild-type mice, but not in littermates lacking δ or α6 subunits. Here we addressed whether low-dose alcohol requires the ß3 subunit for tremor suppression. Methods: We tested whether low-dose alcohol suppresses tremor in cre-negative mice with intact ß3 exon 3 flanked by loxP, and in littermates in which this region was excised by cre expressed under the α6 subunit promotor. Tremor in the harmaline model was measured as a percentage of motion power in the tremor bandwidth divided by overall motion power. Results: Alcohol, 0.500 and 0.575 g/kg, reduced harmaline tremor compared to vehicle-treated controls in floxed ß3 cre- mice, but had no effect on tremor in floxed ß3 cre+ littermates that have ß3 knocked out. This was not due to potential interference of α6 expression by the insertion of the cre gene into the α6 gene since non-floxed ß3 cre+ and cre- littermates exhibited similar tremor suppression by alcohol. Discussion: As α6ß3δ GABAA receptors are sensitive to low-dose alcohol, and cerebellar granule cells express ß3 and are the predominant brain site for α6 and δ expression together, our overall findings suggest alcohol acts to suppress tremor by modulating α6ß3δ GABAA receptors on these cells. Novel drugs that target this receptor may potentially be effective and well-tolerated for essential tremor. Highlights: We previously found with the harmaline essential tremor model that GABAA receptors containing α6 and δ subunits mediate tremor suppression by alcohol. We now show that ß3 subunits in α6-expressing cells, likely cerebellar granule cells, are also required, indicating that alcohol suppresses tremor by modulating α6ß3δ extra-synaptic GABAA receptors.


Asunto(s)
Temblor Esencial , Etanol , Harmalina , Receptores de GABA-A , Animales , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Harmalina/farmacología , Temblor Esencial/tratamiento farmacológico , Temblor Esencial/genética , Ratones , Etanol/farmacología , Depresores del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones Noqueados
2.
Artículo en Inglés | MEDLINE | ID: mdl-37214542

RESUMEN

Background: A long-standing question is why essential tremor often responds to non-intoxicating amounts of alcohol. Blood flow imaging and high-density electroencephalography have indicated that alcohol acts on tremor within the cerebellum. As extra-synaptic δ-subunit-containing GABAA receptors are sensitive to low alcohol levels, we wondered whether these receptors mediate alcohol's anti-tremor effect and, moreover, whether the δ-associated GABAA receptor α6 subunit, found abundantly in the cerebellum, is required. Methods: We tested the hypotheses that low-dose alcohol will suppress harmaline-induced tremor in wild-type mice, but not in littermates lacking GABAA receptor δ subunits, nor in littermates lacking α6 subunits. As the neurosteroid ganaxolone also activates extra-synaptic GABAA receptors, we similarly assessed this compound. The harmaline mouse model of essential tremor was utilized to generate tremor, measured as a percentage of motion power in the tremor bandwidth (9-16 Hz) divided by background motion power at 0.25-32 Hz. Results: Ethanol, 0.500 and 0.575 g/kg, and ganaxolone, 7 and 10 mg/kg, doses that do not impair performance in a sensitive psychomotor task, reduced harmaline tremor compared to vehicle-treated controls in wild-type mice but failed to suppress tremor in littermates lacking the δ or the α6 GABAA receptor subunit. Discussion: As cerebellar granule cells are the predominant brain site intensely expressing GABAA receptors containing both α6 and δ subunits, these findings suggest that this is where alcohol acts to suppress tremor. It is anticipated that medications designed specifically to target α6ßδ-containing GABAA receptors may be effective and well-tolerated for treating essential tremor. Highlights: How does alcohol temporarily ameliorate essential tremor? This study with a mouse model found that two specific kinds of GABA receptor subunits were needed for alcohol to work. As receptors with both these subunits are found mainly in cerebellum, this work suggests this is where alcohol acts to suppress tremor.


Asunto(s)
Temblor Esencial , Receptores de GABA-A , Animales , Humanos , Ratones , Temblor Esencial/tratamiento farmacológico , Etanol/farmacología , Ácido gamma-Aminobutírico/metabolismo , Harmalina/efectos adversos , Temblor/tratamiento farmacológico
3.
Artículo en Inglés | MEDLINE | ID: mdl-30191083

RESUMEN

Background: Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δ subunits, would fail to do so in mice lacking either subunit. Methods: Digitally measured motion power, expressed as 10-16 Hz power (the tremor bandwidth) divided by background 8-32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd-/-) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6-/- ) mice were tested. Results: Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose. Discussion: The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor.


Asunto(s)
Agonistas de Receptores de GABA-A/farmacología , Isoxazoles/farmacología , Receptores de GABA-A/metabolismo , Temblor/tratamiento farmacológico , Temblor/metabolismo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Temblor Esencial/metabolismo , Femenino , Harmalina , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-A/genética
4.
J Psychiatr Res ; 44(16): 1241-5, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20537659

RESUMEN

Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by a life-threatening event causing intense fear. Recently, functional neuroimaging studies have suggested that amygdala hyperactivity is responsible for the symptoms of PTSD. Deep brain stimulation (DBS) can functionally reduce the activity of a cerebral target by delivering an electrical signal through an electrode. We tested whether DBS of the amygdala could be used to treat PTSD symptoms. Rats traumatized by inescapable shocks, in the presence of an unfamiliar object, develop the tendency to bury the object when re-exposed to it several days later. This behavior mimics the symptoms of PTSD. 10 Sprague-Dawley rats underwent the placement of an electrode in the right basolateral nucleus of the amygdala (BLn). The rats were then subjected to a session of inescapable shocks while being exposed to a conspicuous object (a ball). Five rats received DBS treatment while the other 5 rats did not. After 7 days of treatment, the rats were re-exposed to the ball and the time spent burying it under the bedding was recorded. Rats treated with BLn DBS spent on average 13 times less time burying the ball than the sham control rats. The treated rats also spent 18 times more time exploring the ball than the sham control rats. In conclusion, the behavior of treated rats in this PTSD model was nearly normalized. We argue that these results have direct implications for patients suffering from treatment-resistant PTSD by offering a new therapeutic strategy.


Asunto(s)
Amígdala del Cerebelo/fisiología , Estimulación Encefálica Profunda , Trastornos por Estrés Postraumático/terapia , Animales , Conducta Animal/fisiología , Biofisica , Modelos Animales de Enfermedad , Electrochoque/efectos adversos , Conducta Exploratoria/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Trastornos por Estrés Postraumático/etiología
5.
J Neurophysiol ; 97(4): 3004-14, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17314242

RESUMEN

Corticotropin-releasing factor (CRF) injected peripherally or released in response to stressful challenges to the organism reduces gastric tone and contractility, in part by vagal pathways. However, information on the changes in gastric vagal impulse activity evoked by peripheral CRF administration is entirely lacking. Using a novel "dual recording" method in urethane-anesthetized rats, vagal efferent (VE) and afferent (VA) impulse activities were recorded simultaneously from separate, fine bundles dissected from the ventral gastric vagus nerve branch innervating the glandular stomach. Activity records for 38 VA single units (SUs) and 33 VE SUs were sorted from multiunit records obtained from 13 preparations. Intravenous (iv) administration of saline had no effect on multiunit VE activity, whereas CRF (1 microg/kg, iv) immediately inhibited VE activity, reaching a nadir of 54 +/- 8.0% of preinjection levels at 3.0 min postinjection. CRF (1 microg/kg, iv) inhibited 25/33 (75.8%) VE SUs and excited three of 33 (9.1%) VE SUs. In contrast to potent effects on VE activity, iv CRF did not alter multiunit VA activity. Single-unit analysis, however, revealed five of 38 (13.1%) VA SUs excited by iv CRF at widely varying latencies (suggesting an indirect mode of action) and one inhibited VA SU. VA SUs excited after iv CRF did not respond during gastric distention and vice versa. These experiments are the first to use simultaneous recording of gastric VA and VE units. The data demonstrate a predominantly inhibitory influence of iv CRF on VE outflow to the hindstomach, not driven by gastric vagovagal reflex activity.


Asunto(s)
Anestesia , Anestésicos Intravenosos , Hormona Liberadora de Corticotropina/farmacología , Neuronas Aferentes/efectos de los fármacos , Neuronas Eferentes/efectos de los fármacos , Estómago/inervación , Uretano , Nervio Vago/fisiología , Animales , Hormona Liberadora de Corticotropina/administración & dosificación , Interpretación Estadística de Datos , Electrofisiología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Humanos , Inyecciones Intravenosas , Masculino , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología , Estimulación Física , Ratas , Ratas Sprague-Dawley , Sincalida/farmacología , Estómago/fisiología
6.
Brain Res ; 1056(1): 85-96, 2005 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-16095571

RESUMEN

Corticotropin-releasing factor (CRF) receptors have been reported to play a role in tonic colorectal distension (CRD)-induced activation of locus coeruleus (LC) neurons. We examined the influence of repeated phasic CRDs and intracisternal (ic) CRF on the spontaneous discharge rate of LC neurons in chloral hydrate-anesthetized rats and the role of CRF receptors using the nonselective CRF(1)/CRF(2) antagonist, astressin, and the water-soluble CRF(1) receptor antagonist, NBI-35965. Two consecutive phasic CRDs (43.7 +/- 1.1 mm Hg, 30 s each) at a 10-min interval increased LC activity to 184.9 +/- 15% and 171.9 +/- 12.2%, respectively. There was no difference in magnitude, onset (within 1 s), and duration (5-7 min) of the LC responses between the 1st and 2nd CRDs. CRF (300 ng/rat, ic) injected 10 min after the 2nd CRD increased LC activity to 191.1 +/- 11.2%. Astressin (3 mug, ic) completely blocked the 2nd CRD- and ic CRF-induced LC activation. Neither ic vehicle nor astressin influenced basal LC neuronal activity. NBI-35965 (10 mg/kg, iv) prevented the 2nd CRD- and ic CRF-induced LC neuronal activation, while at 5 mg significantly reduced the LC response to the 2nd CRD by 80%, but did not block that of ic CRF injected 30 min later. These findings indicate a primary role of brain CRF interacting with CRF(1) receptors in mediating the activation of LC neurons in response to a phasic CRD within the nociceptive range (>40 mm Hg). This activation may have relevance to irritable bowel syndrome characterized by lower pain threshold to CRD and hypervigilance to colonic input.


Asunto(s)
Acenaftenos/farmacología , Proteína C-Reactiva/efectos de los fármacos , Colon/inervación , Hormona Liberadora de Corticotropina/administración & dosificación , Locus Coeruleus/citología , Proteínas del Tejido Nervioso/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Colon/fisiología , Hormona Liberadora de Corticotropina/farmacología , Interacciones Farmacológicas , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Masculino , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA