Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 6(2): e14649, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21304909

RESUMEN

BACKGROUND: Like conventional crops, some GM cultivars may readily hybridize with their wild or weedy relatives. The progressive introgression of transgenes into wild or weedy populations thus appears inevitable, and we are now faced with the challenge of determining the possible evolutionary effects of these transgenes. The aim of this study was to gain insight into the impact of interspecific hybridization between transgenic plants and weedy relatives on the evolution of the weedy phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Experimental populations of weedy birdseed rape (Brassica rapa) and transgenic rapeseed (B. napus) were grown under glasshouse conditions. Hybridization opportunities with transgenic plants and phenotypic traits (including phenological, morphological and reproductive traits) were measured for each weedy individual. We show that weedy individuals that flowered later and for longer periods were more likely to receive transgenic pollen from crops and weed × crop hybrids. Because stem diameter is correlated with flowering time, plants with wider stems were also more likely to be pollinated by transgenic plants. We also show that the weedy plants with the highest probability of hybridization had the lowest fecundity. CONCLUSION/SIGNIFICANCE: Our results suggest that weeds flowering late and for long periods are less fit because they have a higher probability of hybridizing with crops or weed × crop hybrids. This may result in counter-selection against this subset of weed phenotypes, and a shorter earlier flowering period. It is noteworthy that this potential evolution in flowering time does not depend on the presence of the transgene in the crop. Evolution in flowering time may even be counter-balanced by positive selection acting on the transgene if the latter was positively associated with maternal genes promoting late flowering and long flowering periods. Unfortunately, we could not verify this association in the present experiment.


Asunto(s)
Productos Agrícolas/genética , Evolución Molecular , Copas de Floración/crecimiento & desarrollo , Copas de Floración/genética , Hibridación Genética/fisiología , Malezas/genética , Brassica napus/genética , Brassica rapa/genética , Quimera/genética , Quimera/crecimiento & desarrollo , Quimera/fisiología , Productos Agrícolas/fisiología , Cruzamientos Genéticos , Copas de Floración/fisiología , Fenotipo , Filogenia , Malezas/fisiología , Plantas Modificadas Genéticamente , Factores de Tiempo
2.
Am J Bot ; 91(6): 825-36, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21653438

RESUMEN

It has been argued from first principles that plants mate assortatively by flowering time. However, there have been very few studies of phenological assortative mating, perhaps because current methods to infer paternal phenotype are difficult to apply to natural populations. Two methods are presented to estimate the phenotypic correlation between mates-the quantitative genetic metric for assortative mating-for phenological traits. The first method uses individual flowering schedules to estimate mating probabilities for every potential pairing in a sample. These probabilities are then incorporated into a weighted phenotypic correlation between all potential mates and thus yield a prospective estimate based on mating opportunities. The correlation between mates can also be estimated retrospectively by comparing the regression of offspring phenotype over one parent, which is inflated by assortative mating, to the regression over mid-parent, which is not. In a demonstration experiment with Brassica rapa, the prospective correlation between flowering times (days from germination to anthesis) of pollen recipients and their potential donors was 0.58. The retrospective estimate of this correlation strongly agreed with the prospective estimate. The prospective method is easily employed in field studies that explore the effect of phenological assortative mating on selection response and population differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA