Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Neuropharmacology ; 245: 109817, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104767

RESUMEN

Adenosine triphosphate (ATP) changes the efficacy of synaptic transmission. Despite recent progress in terms of the roles of purinergic receptors in cerebrocortical excitatory synaptic transmission, their contribution to inhibitory synaptic transmission is unknown. To elucidate the effects of α,ß-methylene ATP (αß-mATP), a selective agonist of P2X receptors (P2XRs), on inhibitory synaptic transmission in the insular cortex (IC), we performed whole-cell patch-clamp recording from IC pyramidal neurons (PNs) and fast-spiking neurons (FSNs) in either sex of VGAT-Venus transgenic rats. αß-mATP increased the amplitude of miniature IPSCs (mIPSCs) under conditions in which NMDA receptors (NMDARs) are recruitable. αß-mATP-induced facilitation of mIPSCs was sustained even after the washout of αß-mATP, which was blocked by preincubation with fluorocitrate. The preapplication of NF023 (a P2X1 receptor antagonist) or AF-353 (a P2X3 receptor antagonist) blocked αß-mATP-induced mIPSC facilitation. Intracellular application of the NMDAR antagonist MK801 blocked the facilitation. d-serine, which is an intrinsic agonist of NMDARs, mimicked αß-mATP-induced mIPSC facilitation. The intracellular application of BAPTA a Ca2+ chelator, or the bath application of KN-62, a CaMKII inhibitor, blocked αß-mATP-induced mIPSC facilitation, thus indicating that mIPSC facilitation by αß-mATP required postsynaptic [Ca2+]i elevation through NMDAR activation. Paired whole-cell patch-clamp recordings from FSNs and PNs demonstrated that αß-mATP increased the amplitude of unitary IPSCs without changing the paired-pulse ratio. These results suggest that αß-mATP-induced IPSC facilitation is mediated by postsynaptic NMDAR activations through d-serine released from astrocytes. Subsequent [Ca2+]i increase and postsynaptic CaMKII activation may release retrograde messengers that upregulate GABA release from presynaptic inhibitory neurons, including FSNs. (250/250 words).


Asunto(s)
Corteza Insular , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Transmisión Sináptica , Sinapsis , Ratas Transgénicas , Adenosina Trifosfato/farmacología , Serina/farmacología
2.
Neuropharmacology ; 238: 109649, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393988

RESUMEN

Insulin plays roles in brain functions such as neural development and plasticity and is reported to be involved in dementia and depression. However, little information is available on the insulin-mediated modulation of electrophysiological activities, especially in the cerebral cortex. This study examined how insulin modulates the neural activities of inhibitory neurons and inhibitory postsynaptic currents (IPSCs) in rat insular cortex (IC; either sex) by multiple whole-cell patch-clamp recordings. We demonstrated that insulin increased the repetitive spike firing rate with a decrease in the threshold potential without changing the resting membrane potentials and input resistance of fast-spiking GABAergic neurons (FSNs). Next, we found a dose-dependent enhancement of unitary IPSCs (uIPSCs) by insulin in the connections from FSNs to pyramidal neurons (PNs). The insulin-induced enhancement of uIPSCs accompanied decreases in the paired-pulse ratio, suggesting that insulin increases GABA release from presynaptic terminals. The finding of miniature IPSC recordings of the increased frequency without changing the amplitude supports this hypothesis. Insulin had little effect on uIPSCs under the coapplication of S961, an insulin receptor antagonist, or lavendustin A, an inhibitor of tyrosine kinase. The PI3-K inhibitor wortmannin or the PKB/Akt inhibitors, deguelin and Akt inhibitor VIII, blocked the insulin-induced enhancement of uIPSCs. Intracellular application of Akt inhibitor VIII to presynaptic FSNs also blocked insulin-induced enhancement of uIPSCs. In contrast, uIPSCs were enhanced by insulin in combination with the MAPK inhibitor PD98059. These results suggest that insulin facilitates the inhibition of PNs by increases in FSN firing frequency and IPSCs from FSNs to PNs. (250 words).


Asunto(s)
Corteza Insular , Insulina , Ratas , Animales , Insulina/farmacología , Ratas Transgénicas , Células Piramidales , Neuronas GABAérgicas , Transmisión Sináptica , Potenciales Postsinápticos Inhibidores
3.
J Oral Sci ; 65(2): 77-80, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36823134

RESUMEN

PURPOSE: Inhibitory synaptic currents from fast-spiking neurons (FSNs), a typical gamma-aminobutyric acid (GABA)ergic interneuron in the cerebral cortex, to pyramidal neurons are facilitated by insulin. FSNs frequently show electrical synapses to FSNs, however, the effect of insulin on these electrical synapses is unknown. The aim of this study was to evaluate effects of insulin on electrical synaptic potentials between FSNs. METHODS: Electrical synaptic potentials via gap junctions between FSNs were recorded to examine how insulin modulates these potentials in the rat insular cortex (IC). RESULTS: Bath application of insulin (10 nM), which increases the spike firing rate of pyramidal neurons and unitary inhibitory postsynaptic currents recorded from FSN to pyramidal neuron connections, slightly but significantly increased electrical synaptic currents. The mean ratio of electrical synapses, the coupling coefficient that is obtained by postsynaptic voltage responses divided by presynaptic voltage amplitude, was 8.3 ± 1.1% in control and 9.2 ± 1.1% (n = 14) during 10 nM insulin application. Input resistance and voltage responses to large hyperpolarizing currents (-140 pA) were not changed by insulin. CONCLUSION: These results suggest that insulin facilitates spike synchronization by increasing electrical synaptic currents via gap junctions of GABAergic FSNs in the IC.


Asunto(s)
Corteza Insular , Insulina , Ratas , Animales , Insulina/farmacología , Transmisión Sináptica/fisiología , Corteza Cerebral/fisiología , Uniones Comunicantes , Interneuronas/fisiología , Potenciales de Acción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA