Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Brain Behav Immun ; 123: 229-243, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288893

RESUMEN

Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3ß. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.

2.
Nat Commun ; 15(1): 5311, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906891

RESUMEN

To adapt to the complex belowground environment, plants make trade-offs between root resource acquisition and defence ability. This includes forming partnerships with different types of root associating microorganisms, such as arbuscular mycorrhizal and ectomycorrhizal fungi. These trade-offs, by mediating root chemistry, exert legacy effects on nutrient release during decomposition, which may, in turn, affect the ability of new roots to re-acquire resources, thereby generating a feedback loop. However, the linkages at the basis of this potential feedback loop remain largely unquantified. Here, we propose a trait-based root 'acquisition-defence-decomposition' conceptual framework and test the strength of relevant linkages across 90 angiosperm tree species. We show that, at the plant species level, the root-fungal symbiosis gradient within the root economics space, root chemical defence (condensed tannins), and root decomposition rate are closely linked, providing support to this framework. Beyond the dichotomy between arbuscular mycorrhizal-dominated versus ectomycorrhizal-dominated systems, we suggest a continuous shift in feedback loops, from 'high arbuscular mycorrhizal symbiosis-low defence-fast decomposition-inorganic nutrition' by evolutionarily ancient taxa to 'high ectomycorrhizal symbiosis-high defence-slow decomposition-organic nutrition' by more modern taxa. This 'acquisition-defence-decomposition' framework provides a foundation for testable hypotheses on multidimensional linkages between species' belowground strategies and ecosystem nutrient cycling in an evolutionary context.


Asunto(s)
Magnoliopsida , Micorrizas , Raíces de Plantas , Simbiosis , Árboles , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Micorrizas/fisiología , Árboles/microbiología , Árboles/metabolismo , Magnoliopsida/microbiología , Magnoliopsida/metabolismo
3.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38702933

RESUMEN

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Asunto(s)
Exosomas , Ratones Endogámicos C57BL , Microglía , Enfermedad de Parkinson , ATPasas de Translocación de Protón Vacuolares , alfa-Sinucleína , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , alfa-Sinucleína/metabolismo , Exosomas/metabolismo , Lisosomas/metabolismo , Microglía/metabolismo , Microglía/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
4.
Exp Neurol ; 376: 114757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508481

RESUMEN

The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.


Asunto(s)
Vesículas Extracelulares , Lisosomas , Mitocondrias , Enfermedades Neurodegenerativas , Humanos , Lisosomas/metabolismo , Vesículas Extracelulares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mitocondrias/metabolismo , Animales , Nanomedicina Teranóstica/métodos
5.
Ageing Res Rev ; 95: 102232, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38364915

RESUMEN

Circadian rhythms are involved in the regulation of many aspects of the body, including cell function, physical activity and disease. Circadian disturbance often predates the typical symptoms of neurodegenerative diseases and is not only a non-motor symptom, but also one of the causes of their occurrence and progression. Glial cells possess circadian clocks that regulate their function to maintain brain development and homeostasis. Emerging evidence suggests that the microglial circadian clock is involved in the regulation of many physiological processes, such as cytokine release, phagocytosis, and nutritional and metabolic support, and that disruption of the microglia clock may affect multiple aspects of Parkinson's disease, especially neuroinflammation and α-synuclein processes. Herein, we review recent advances in the circadian control of microglia function in health and disease, and discuss novel pharmacological interventions for microglial clocks in neurodegenerative disorders.


Asunto(s)
Relojes Circadianos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ritmo Circadiano/fisiología
6.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37738586

RESUMEN

Plants allocate a substantial amount of C belowground for root exudates and for the construction and adjustment of root morphological and architectural traits. What relationships exist between root exudates and other root traits and these relationships change with growing season, however, remain unclear. We quantified the root exudation rate and root morphological traits, including total root length (RL), total root surface area (RS), root diameter (RD), specific root length (SRL), specific root area (SRA) and root tissue density (RTD), and architectural traits, such as branching intensity (BI), and investigated their associations during the rapidly growing season (April and August) and the slowly growing season (December) of three common native tree species, Liquidambar formosana, Michelia maudiae and Schima superba, in subtropical China. We found that the linkages of RD, SRL, SRA, RTD and BI did not change with the growing season, reflecting their highly conservative relationships. The root exudation rate varied significantly with growing season (P < 0.05) and produced various associations with other root traits at different growing seasons. During the rapidly growing season (i.e., April), the exudation rate was the highest and was positively correlated with RL. The exudation rate was the lowest during the slowly growing season (i.e., December) and was negatively associated with RL, RS and RTD. Our findings demonstrate the seasonality of the linkages of root exudation rate with other root traits, which highlights the highly plastic and complex associations of belowground root traits. These findings help to deepen our understanding of plant nutrient acquisition strategies.


Asunto(s)
Raíces de Plantas , Suelo , Estaciones del Año , Raíces de Plantas/anatomía & histología , Plantas , Árboles
7.
Neurobiol Dis ; 184: 106224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37433411

RESUMEN

Parkinson's disease (PD) is currently the fastest growing disabling neurological disorder worldwide, with motor and non-motor symptoms being its main clinical manifestations. The primary pathological features include a reduction in the number of dopaminergic neurons in the substantia nigra and decrease in dopamine levels in the nigrostriatal pathway. Existing treatments only alleviate clinical symptoms and do not stop disease progression; slowing down the loss of dopaminergic neurons and stimulating their regeneration are emerging therapies. Preclinical studies have demonstrated that transplantation of dopamine cells generated from human embryonic or induced pluripotent stem cells can restore the loss of dopamine. However, the application of cell transplantation is limited owing to ethical controversies and the restricted source of cells. Until recently, the reprogramming of astrocytes to replenish lost dopaminergic neurons has provided a promising alternative therapy for PD. In addition, repair of mitochondrial perturbations, clearance of damaged mitochondria in astrocytes, and control of astrocyte inflammation may be extensively neuroprotective and beneficial against chronic neuroinflammation in PD. Therefore, this review primarily focuses on the progress and remaining issues in astrocyte reprogramming using transcription factors (TFs) and miRNAs, as well as exploring possible new targets for treating PD by repairing astrocytic mitochondria and reducing astrocytic inflammation.


Asunto(s)
Astrocitos , Enfermedad de Parkinson , Humanos , Astrocitos/metabolismo , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Inflamación/metabolismo
8.
Tree Physiol ; 43(7): 1092-1103, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074159

RESUMEN

Plant-soil feedback (PSF) is conventionally characterized by plant biomass growth, yet it remains unclear how PSF affects plant nutrient acquisition strategies (e.g., nutrient absorption and nutrient resorption) associated with plant growth, particularly under changing soil environments. A greenhouse experiment was performed with seedlings of Pinus elliottii Englem and conditioned soils of monoculture plantations (P. elliottii and Cunninghamia lanceolata Hook). Soil sterilization was designed to test plant phosphorus (P) acquisition strategy with and without native soil fungal communities. Soils from P. elliottii and C. lanceolata plantations were used to explore the specific soil legacy effects on two different P acquisition pathways (absorption and resorption). Phosphorus addition was also applied to examine the separate and combined effects of soil abiotic factors and soil fungal factors on P acquisition pathways. Due to diminished mycorrhizal symbiosis, PSF prompted plants to increasingly rely on P resorption under soil sterilization. In contrast, P absorption was employed preferentially in the heterospecific soil, where species-specific pathogenic fungi could not affect P absorption. Higher soil P availability diluted the effects of soil fungal factors on the trade-off between the two P acquisition pathways in terms of the absolute PSF. Moreover, P addition plays a limited role in terms of the relative PSF and does not affect the direction and strength of relative PSF. Our results reveal the role of PSF in regulating plant P acquisition pathways and highlight the interaction between mycorrhizal and pathogenic fungi as the underlying mechanism of PSF.


Asunto(s)
Micorrizas , Pinus , Suelo , Fósforo/metabolismo , Raíces de Plantas , Retroalimentación , Pinus/metabolismo , Micorrizas/fisiología , Plantas/metabolismo , Microbiología del Suelo
10.
New Phytol ; 238(2): 612-623, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36647205

RESUMEN

Unravelling belowground strategies is critical for understanding species coexistence and successional dynamics; yet, our knowledge of nutrient acquisition strategies of forest species at different successional stages remains limited. We measured morphological (diameter, specific root length, and root tissue density), architectural (branching ratio), physiological (ammonium, nitrate, and glycine uptake rates) root traits, and mycorrhizal colonisation rates of eight coexisting woody species in an early successional plantation forest in subtropical China. By incorporating physiological uptake efficiency, we revealed a bi-dimensional root economics space comprising of an 'amount-efficiency' dimension represented by morphological and physiological traits, and a 'self-symbiosis' dimension dominated by architectural and mycorrhizal traits. The early pioneer species relied on root-fungal symbiosis, developing densely branched roots with high mycorrhizal colonisation rates for foraging mobile soil nitrate. The late pioneer species invested in roots themselves and allocated effort towards improving uptake efficiency of less-mobile ammonium. Within the root economics space, the covariation of axes with soil phosphorus availability also distinguished the strategy preference of the two successional groups. These results demonstrate the importance of incorporating physiological uptake efficiency into root economics space, and reveal a trade-off between expanding soil physical space exploration and improving physiological uptake efficiency for successional species coexistence in forests.


Asunto(s)
Micorrizas , Árboles , Árboles/fisiología , Raíces de Plantas/fisiología , Nitratos , Bosques , Micorrizas/fisiología , Suelo
11.
Sci Total Environ ; 861: 160661, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36473665

RESUMEN

Nitrogen (N) is a major element limiting plant growth and metabolism. Nitrogen addition can influence plant growth, N uptake, and species interactions, while phosphorus (P) addition may affect N acquisition. However, knowledge of how nutrient availability influences N uptake and species interactions remains limited and controversial. Here, pot experiments were conducted for 14 months, in which conifers (Pinus massoniana and Pinus elliottii) and broadleaved trees (Michelia maudiae and Schima superba) were planted in monoculture or mixture, and provided additional N and P in a full-factorial design. Nitrogen addition increased the biomass, but P addition did not significantly affect the biomass of the four subtropical species. Combined N and P (NP) addition had no additive effect on plant biomass over N addition. Total plant biomass was significantly positively correlated to root traits (branching intensity and root tissue density) and leaf traits (net photosynthetic rate, stomatal conductance, and transpiration rate), but negatively correlated to root diameter in response to nutrient addition. Plant uptake rates of NH4+ or NO3- were not altered by N addition, but P or NP additions decreased NH4+ uptake rates and increased NO3- uptake rates. Neighboring conifers significantly inhibited NH4+ and NO3- uptake rates of the two broadleaf species, but neighboring broadleaves had no effects on the N uptake rates of pine species. The effects of nutrient additions on interspecific interactions differed among species. Nitrogen addition altered the interaction of P. elliottii and M. maudiae from neutral to competition, while P addition altered the interaction of P. massoniana and M. maudiae from neutral to favorable effects. Increasing nutrient availability switched the direction of interspecific interaction in favor of pines. This study provides insights into forest management for productivity improvement and optimizing the selection of broadleaf species regarding differences in soil fertility of subtropical plantations.


Asunto(s)
Pinus , Tracheophyta , Plantones/metabolismo , Nitrógeno/análisis , Fósforo/metabolismo , Tracheophyta/metabolismo , Bosques , Árboles , Suelo
12.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236536

RESUMEN

With the advent of the digital information age, new data services such as virtual reality, industrial Internet, and cloud computing have proliferated in recent years. As a result, it increases operator demand for 5G bearer networks by providing features such as high transmission capacity, ultra-long transmission distance, network slicing, and intelligent management and control. Software-defined networking, as a new network architecture, intends to increase network flexibility and agility and can better satisfy the demands of 5G networks for network slicing. Nevertheless, software-defined networking still faces the challenge of network intrusion. We propose an abnormal traffic detection method based on the stacking method and self-attention mechanism, which makes up for the shortcoming of the inability to track long-term dependencies between data samples in ensemble learning. Our method utilizes a self-attention mechanism and a convolutional network to automatically learn long-term associations between traffic samples and provide them to downstream tasks in sample embedding. In addition, we design a novel stacking ensemble method, which computes the sample embedding and the predicted values of the heterogeneous base learner through the fusion module to obtain the final outlier results. This paper conducts experiments on abnormal traffic datasets in the software-defined network environment, calculates precision, recall and F1-score, and compares and analyzes them with other algorithms. The experimental results show that the method designed in this paper achieves 0.9972, 0.9996, and 0.9984 in multiple indicators of precision, recall, and F1-score, respectively, which are better than the comparison methods.


Asunto(s)
Algoritmos , Programas Informáticos , Nube Computacional , Aprendizaje , Aprendizaje Automático
13.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36287714

RESUMEN

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Asunto(s)
COVID-19 , Vacunas Virales , Ratas , Ratones , Humanos , Animales , SARS-CoV-2 , Vacunas contra la COVID-19 , Anticuerpos ampliamente neutralizantes , Pandemias/prevención & control , COVID-19/prevención & control , Ratas Sprague-Dawley , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética , Ratones Endogámicos BALB C , Macaca mulatta , Anticuerpos Antivirales
14.
CNS Neurosci Ther ; 28(11): 1706-1717, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36047338

RESUMEN

BACKGROUND: Current evidence for the efficacy of pharmacological treatment in improving cognitive function is absent. Recent studies have reported that 3-n-butylphthalide (NBP) has a positive effect on improving cognitive impairment; however, its clinical efficacy and safety is unclear. Therefore, we conducted a meta-analysis to assess its efficacy and safety for cognitive impairment. METHODS: We systematically searched the PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus databases, and two reviewers independently screened and extracted the data from included studies. We synthesized the data using the Review Manager Software version 5.3. RESULTS: We included six randomized clinical trials (RCTs), encompassing 851 patients with cognitive impairment. The results showed that NBP improved cognitive impairment. Specifically, the clinical efficacy was better than that in the control group, with better performance in improving the Mini-Mental State Examination and the Montreal Cognitive Assessment scores, while decreasing the Alzheimer's Disease Assessment Scale-Cognitive subscale and the Clinician's Interview-Based Impression of Change plus caregiver input scores. There was no significant difference in the incidence of adverse events between both groups. CONCLUSION: The NBP is effective and safe in improving cognitive impairment; however, more high-quality RCTs are needed to confirm these findings.


Asunto(s)
Benzofuranos , Trastornos del Conocimiento , Disfunción Cognitiva , Benzofuranos/efectos adversos , Cognición , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Humanos
15.
J Neuroinflammation ; 19(1): 133, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668454

RESUMEN

BACKGROUND: Circadian disturbance is a common nonmotor complaint in Parkinson's disease (PD). The molecular basis underlying circadian rhythm in PD is poorly understood. Neuroinflammation has been identified as a key contributor to PD pathology. In this study, we explored the potential link between the core clock molecule Rev-erbα and the microglia-mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome in PD pathogenesis. METHODS: We first examined the diurnal Rev-erbα rhythms and diurnal changes in microglia-mediated inflammatory cytokines expression in the SN of MPTP-induced PD mice. Further, we used BV2 cell to investigate the impacts of Rev-erbα on NLRP3 inflammasome and microglial polarization induced by 1-methyl-4-phenylpyridinium (MPP+) and αsyn pre-formed fibril. The role of Rev-erbα in regulating microglial activation via NF-κB and NLRP3 inflammasome pathway was then explored. Effects of SR9009 against NLRP3 inflammasome activation, microgliosis and nigrostriatal dopaminergic degeneration in the SN and striatum of MPTP-induced PD mice were studied in detail. RESULTS: BV2 cell-based experiments revealed the role of Rev-erbα in regulating microglial activation and polarization through the NF-κB and NLRP3 inflammasome pathways. Circadian oscillation of the core clock gene Rev-erbα in the substantia nigra (SN) disappeared in MPTP-induced PD mice, as well as diurnal changes in microglial morphology. The expression of inflammatory cytokines in SN of the MPTP-induced mice were significantly elevated. Furthermore, dopaminergic neurons loss in the nigrostriatal system were partially reversed by SR9009, a selective Rev-erbα agonist. In addition, SR9009 effectively reduced the MPTP-induced glial activation, microglial polarization and NLRP3 inflammasome activation in the nigrostriatal system. CONCLUSIONS: These observations suggest that the circadian clock protein Rev-erbα plays an essential role in attenuating neuroinflammation in PD pathology, and provides a potential therapeutic target for PD treatment.


Asunto(s)
Relojes Circadianos , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Citocinas/metabolismo , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Neuroprotección , Enfermedad de Parkinson/patología
16.
Sci Total Environ ; 838(Pt 2): 156027, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35605864

RESUMEN

Exposure to pyrethroids, a significant class of the most widely used agricultural chemicals, has been associated with an increased risk of Parkinson's disease (PD). However, although many different pyrethroids induce roughly the same symptoms of Parkinsonism, the underlying mechanisms remain unknown. To find the shared key features among these mechanisms, we focused on 3-phenoxybenzoic acid (3-PBA), a common and prominent metabolite of most pyrethroids produced via hydrolysis by CEs in mammals. To determine the contribution of 3-PBA to the initiation and progression of PD, we performed in vivo and in vitro experiments, respectively, and found that 3-PBA not only accumulates in murine brain tissues over time but also further induces PD-like pathologies (increased α-syn and phospho-S129, decreased TH) to the same or even greater extent than the precursor pyrethroid. A before-after study of PET-DAT in the same mice revealed that low concentrations of 3-PBA (0.5 mg/kg) could paradoxically cause DAT to increase (22.46% higher than pre-drug test). The intervention of DAT inhibitors and activators respectively alleviated and enhanced the dopaminergic toxicity of 3-PBA, indicating that 3-PBA interacts with DAT. In particular, low concentrations of 3-PBA increase the DAT, which in turn induces 3-PBA to enter the dopaminergic neurons to exert toxic effects. Finally, we described a mechanism underlying this potential role of 3-PBA in the pathological aggregation of α-syn. Specifically, 3-PBA was found to dysregulate C/EBP ß levels and further anomalously activate AEP in vivo and in vitro, accompanied by increased accumulation of pathologically cleaved α-syn (N103 fragments) and accelerated α-syn aggregation. All these results suggest that 3-PBA exposure could mimic the pathological and pathogenetic features of PD, showing that this metabolite is a key pathogenic compound in pyrethroid-related pathological effects and a possible dopamine neurotoxin. Additionally, our findings provide a crucial reference for the primary prevention of PD.


Asunto(s)
Enfermedad de Parkinson , Piretrinas , Animales , Benzoatos/toxicidad , Dopamina , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Mamíferos/metabolismo , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Piretrinas/toxicidad
17.
New Phytol ; 234(5): 1639-1653, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35243647

RESUMEN

The root economics space (RES) is multidimensional and largely shaped by belowground biotic and abiotic influences. However, how root-fungal symbioses and edaphic fertility drive this complexity remains unclear. Here, we measured absorptive root traits of 112 tree species in temperate and subtropical forests of China, including traits linked to functional differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) hosts. Our data, from known mycorrhizal tree species, revealed a 'fungal-symbiosis' dimension distinguishing AM from ECM species. This divergence likely resulted from the contrasting mycorrhizal evolutionary development of AM vs ECM associations. Increased root tissue cortical space facilitates AM symbiosis, whereas increased root branching favours ECM symbiosis. Irrespective of mycorrhizal type, a 'root-lifespan' dimension reflecting aspects of root construction cost and defence was controlled by variation in specific root length and root tissue density, which was fully independent of root nitrogen content. Within this function-based RES, we observed a substantial covariation of axes with soil phosphorus and nitrate levels, highlighting the role played by these two axes in nutrient acquisition and conservation. Overall, our findings demonstrate the importance of evolved mycorrhizal symbiosis pathway and edaphic fertility in framing the RES, and provide theoretical and mechanistic insights into the complexity of root economics.


Asunto(s)
Micorrizas , Fertilidad , Raíces de Plantas/metabolismo , Suelo , Microbiología del Suelo , Simbiosis , Árboles
18.
Mol Neurobiol ; 59(2): 1333-1344, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34984583

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative disease characterized by aggregation of pathological alpha-synuclein (α-syn) and loss of dopaminergic neuron in the substantia nigra. Inhibition of phosphorylation of the α-syn has been shown to mediate alleviation of PD-related pathology. Protein phosphatase 2A (PP2A), an important serine/threonine phosphatase, plays an essential role in catalyzing dephosphorylation of the α-syn. Here, we identified and validated cancerous inhibitor of PP2A (CIP2A), as a potential diagnostic biomarker for PD. Our data showed that plasma CIP2A concentrations in PD patients were significantly lower compared to age- and sex-matched controls, 1.721 (1.435-2.428) ng/ml vs 3.051(2.36-5.475) ng/ml, p < 0.0001. The area under the curve of the plasma CIP2A in distinguishing PD from the age- and sex-matched controls was 0.776. In addition, we evaluated the role of CIP2A in PD-related pathogenesis in PD cellular and MPTP-induced mouse model. The results demonstrated that CIP2A is upregulated in PD cellular and MPTP-induced mouse models. Besides, suppression of the CIP2A expression alleviates rotenone induced aggregation of the α-syn as well as phosphorylation of the α-syn in SH-SY5Y cells, which is associated with increased PP2A activity. Taken together, our data demonstrated that CIP2A plays an essential role in the mechanisms related to PD development and might be a novel PD biomarker.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Autoantígenos , Biomarcadores/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Proteína Fosfatasa 2/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/metabolismo
19.
Front Immunol ; 12: 719807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691027

RESUMEN

According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson's disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.


Asunto(s)
Inflamasomas/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Receptores Toll-Like/metabolismo , alfa-Sinucleína/metabolismo , Animales , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Terapia Molecular Dirigida , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas , Unión Proteica , Transducción de Señal/efectos de los fármacos
20.
Front Aging Neurosci ; 13: 657095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393753

RESUMEN

The pathogenesis of Parkinson's disease (PD) is currently unclear. Recent studies have suggested a correlation between vitamin D and PD. Vitamin D and its analogs have protective effects in animal models of PD, but these studies have not clarified the mechanism. Parthanatos is a distinct type of cell death caused by excessive activation of poly (ADP-ribose) polymerase-1 (PARP1), and the activation of PARP1 in PD models suggests that parthanatos may exist in PD pathophysiology. 1,25-Dihydroxyvitamin D3 (calcitriol) is a potential inhibitor of PARP1 in macrophages. This study aimed to investigate whether calcitriol treatment improves PD models and its effects on the parthanatos pathway. A 1-methyl-4-phenylpyridinium (MPP+)-induced cell model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) subacute animal model were selected as the in vitro and in vivo PD models, and calcitriol was applied in these models. Results showed that parthanatos existed in the MPP+-induced cell model and pretreatment with calcitriol improved cell viability, reduced the excessive activation of PARP1, and relieved parthanatos. The application of calcitriol in the MPTP subacute animal model also improved behavioral tests, restored the damage to dopamine neurons, and reduced the activation of PARP1-related signaling pathways. To verify whether calcitriol interacts with PARP1 through its vitamin D receptor (VDR), siRNA, and overexpression plasmids were used to downregulate or overexpress VDR. Following the downregulation of VDR, the expression and activation of PARP1 increased and PARP1 was inhibited when VDR was overexpressed. Coimmunoprecipitation verified the combination of VDR and PARP1. In short, calcitriol can substantially improve parthanatos in the MPP+-induced cell model and MPTP model, and the protective effect might be partly through the VDR/PARP1 pathway, which provides a new possibility for the treatment of PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA