Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep ; 40(8): 111202, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001978

RESUMEN

Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas.


Asunto(s)
Endocannabinoides , Neocórtex , Interneuronas/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Receptor Cannabinoide CB1 , Ácido gamma-Aminobutírico/fisiología
2.
Cell Rep ; 37(8): 110035, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818555

RESUMEN

The frontal cortex is essential for organizing voluntary movement. The secondary motor cortex (MOs) is a frontal subregion thought to integrate internal and external inputs before motor action. However, how excitatory and inhibitory synaptic inputs to MOs neurons are integrated preceding movement remains unclear. Here, we address this question by performing in vivo whole-cell recordings from MOs neurons of head-fixed mice moving on a treadmill. We find that principal neurons produce slowly increasing membrane potential and spike ramps preceding spontaneous running. After goal-directed training, ramps show larger amplitudes and accelerated kinetics. Chemogenetic suppression of interneurons combined with modeling suggests that the interplay between parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons, along with principal neuron recurrent connectivity, shape ramping signals. Plasticity of excitatory synapses on SOM+ interneurons can explain the ramp acceleration after training. Altogether, our data reveal that local interneurons differentially control task-dependent ramping signals when MOs neurons integrate inputs preceding movement.


Asunto(s)
Locomoción/fisiología , Corteza Motora/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Lóbulo Frontal/fisiología , Humanos , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp/métodos , Sinapsis/fisiología
3.
Curr Res Neurobiol ; 2: 100018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820636

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) modulate the cholinergic drive to a hierarchy of inhibitory neurons in the superficial layers of the PFC, critical to cognitive processes. It has been shown that genetic deletions of the various types of nAChRs impact the properties of ultra-slow transitions between high and low PFC activity states in mice during quiet wakefulness. The impact characteristics depend on specific interneuron populations expressing the manipulated receptor subtype. In addition, recent data indicate that a genetic mutation of the α5 nAChR subunit, located on vasoactive intestinal polypeptide (VIP) inhibitory neurons, the rs16969968 single nucleotide polymorphism (α5 SNP), plays a key role in the hypofrontality observed in schizophrenia patients carrying the SNP. Data also indicate that chronic nicotine application to α5 SNP mice relieves the hypofrontality. We developed a computational model to show that the activity patterns recorded in the genetically modified mice can be explained by changes in the dynamics of the local PFC circuit. Notably, our model shows that these altered PFC circuit dynamics are due to changes in the stability structure of the activity states. We identify how this stability structure is differentially modulated by cholinergic inputs to the parvalbumin (PV), somatostatin (SOM) or the VIP inhibitory populations. Our model uncovers that a change in amplitude, but not duration of the high activity states can account for the lowered pyramidal (PYR) population firing rates recorded in α5 SNP mice. We demonstrate how nicotine-induced desensitization and upregulation of the ß2 nAChRs located on SOM interneurons, as opposed to the activation of α5 nAChRs located on VIP interneurons, is sufficient to explain the nicotine-induced activity normalization in α5 SNP mice. The model further implies that subsequent nicotine withdrawal may exacerbate the hypofrontality over and beyond one caused by the SNP mutation.

4.
Cortex ; 132: 258-280, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33007640

RESUMEN

The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.


Asunto(s)
Neocórtex , Animales , Inhibición Psicológica , Interneuronas , Ratones , Inhibición Neural , Neuronas , Neurofisiología
5.
Trends Neurosci ; 43(8): 550-564, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32591156

RESUMEN

Recent studies provided strong evidence that deficits in cholinergic signaling cause disorders of cognition and affect conscious processing. Technical advances that combine molecular approaches, in vivo recordings in awake behaving animals, human brain imaging, and genetics have strengthened our understanding of the roles of nicotinic acetylcholine receptors (nAChRs) in the modulation of cognitive behavior and network dynamics. Here, we review the emergent role of nAChRs in high-order cognitive processes and discuss recent work implicating cholinergic circuits in cognitive control, including conscious processing.


Asunto(s)
Receptores Nicotínicos , Animales , Encéfalo/metabolismo , Colinérgicos , Cognición , Humanos , Neuronas/metabolismo
6.
Dev Biol ; 461(1): 86-95, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982375

RESUMEN

One of the main obstacles for studying the molecular and cellular mechanisms underlying human neurodevelopment in vivo is the scarcity of experimental models. The discovery that neurons can be generated from human induced pluripotent stem cells (hiPSCs) paves the way for novel approaches that are stem cell-based. Here, we developed a technique to follow the development of transplanted hiPSC-derived neuronal precursors in the cortex of mice over time. Using post-mortem immunohistochemistry we quantified the differentiation and maturation of dendritic patterns of the human neurons over a total of six months. In addition, entirely hiPSC-derived neuronal parenchyma was followed over eight months using two-photon in vivo imaging through a cranial window. We found that transplanted hiPSC-derived neuronal precursors exhibit a "protracted" human developmental programme in different cortical areas. This offers novel possibilities for the sequential in vivo study of human cortical development and its alteration, followed in "real time".


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Corteza Motora/embriología , Neurogénesis/fisiología , Células Piramidales/trasplante , Animales , Encéfalo/embriología , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Corteza Motora/citología , Células Piramidales/citología , Trasplante Heterólogo
7.
Nat Med ; 23(3): 347-354, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28112735

RESUMEN

The prefrontal cortex (PFC) underlies higher cognitive processes that are modulated by nicotinic acetylcholine receptor (nAChR) activation by cholinergic inputs. PFC spontaneous default activity is altered in neuropsychiatric disorders, including schizophrenia-a disorder that can be accompanied by heavy smoking. Recently, genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) in the human CHRNA5 gene, encoding the α5 nAChR subunit, that increase the risks for both smoking and schizophrenia. Mice with altered nAChR gene function exhibit PFC-dependent behavioral deficits, but it is unknown how the corresponding human polymorphisms alter the cellular and circuit mechanisms underlying behavior. Here we show that mice expressing a human α5 SNP exhibit neurocognitive behavioral deficits in social interaction and sensorimotor gating tasks. Two-photon calcium imaging in awake mouse models showed that nicotine can differentially influence PFC pyramidal cell activity by nAChR modulation of layer II/III hierarchical inhibitory circuits. In α5-SNP-expressing and α5-knockout mice, lower activity of vasoactive intestinal polypeptide (VIP) interneurons resulted in an increased somatostatin (SOM) interneuron inhibitory drive over layer II/III pyramidal neurons. The decreased activity observed in α5-SNP-expressing mice resembles the hypofrontality observed in patients with psychiatric disorders, including schizophrenia and addiction. Chronic nicotine administration reversed this hypofrontality, suggesting that administration of nicotine may represent a therapeutic strategy for the treatment of schizophrenia, and a physiological basis for the tendency of patients with schizophrenia to self-medicate by smoking.


Asunto(s)
Conducta Animal/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Conducta Social , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Corteza Prefrontal/fisiopatología , Inhibición Prepulso/efectos de los fármacos , Receptores Adrenérgicos beta 2/genética , Receptores Nicotínicos/genética , Reflejo de Sobresalto/efectos de los fármacos , Esquizofrenia/genética , Tabaquismo/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética
8.
Aging (Albany NY) ; 8(12): 3430-3449, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999185

RESUMEN

Alzheimer's Disease (AD) is the most common form of dementia. The condition predominantly affects the cerebral cortex and hippocampus and is characterized by the spread of amyloid plaques and neurofibrillary tangles (NFTs). But soluble amyloid-ß (Aß) oligomers have also been identified to accumulate in the brains of AD patients and correlate with cognitive dysfunction more than the extent of plaque deposition. Here, we developed an adeno-associated viral vector expressing the human mutated amyloid precursor protein (AAV-hAPP). Intracranial injection of the AAV into the prefrontal cortex (PFC) allowed the induction of AD-like deficits in adult mice, thereby modelling human pathology. AAV-hAPP expression caused accumulation of Aß oligomers, microglial activation, astrocytosis and the gradual formation of amyloid plaques and NFTs. In vivo two-photon imaging revealed an increase in neuronal activity, a dysfunction characteristic of the pathology, already during the accumulation of soluble oligomers. Importantly, we found that Aß disrupts the synchronous spontaneous activity of neurons in PFC that, as in humans, is characterized by ultraslow fluctuation patterns. Our work allowed us to track brain activity changes during disease progression and provides new insight into the early deficits of synchronous ongoing brain activity, the "default network", in the presence of Aß peptide.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Neuronas/fisiología , Placa Amiloide/metabolismo , Corteza Prefrontal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/patología , Corteza Prefrontal/patología
9.
Proc Natl Acad Sci U S A ; 113(51): 14823-14828, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27911815

RESUMEN

The prefrontal cortex (PFC) plays an important role in cognitive processes, including access to consciousness. The PFC receives significant cholinergic innervation and nicotinic acetylcholine receptors (nAChRs) contribute greatly to the effects of acetylcholine signaling. Using in vivo two-photon imaging of both awake and anesthetized mice, we recorded spontaneous, ongoing neuronal activity in layer II/III in the PFC of WT mice and mice deleted for different nAChR subunits. As in humans, this activity is characterized by synchronous ultraslow fluctuations and neuronal synchronicity is disrupted by light general anesthesia. Both the α7 and ß2 nAChR subunits play an important role in the generation of ultraslow fluctuations that occur to a different extent during quiet wakefulness and light general anesthesia. The ß2 subunit is specifically required for synchronized activity patterns. Furthermore, chronic application of mecamylamine, an antagonist of nAChRs, disrupts the generation of ultraslow fluctuations. Our findings provide new insight into the ongoing spontaneous activity in the awake and anesthetized state, and the role of cholinergic neurotransmission in the orchestration of cognitive functions.


Asunto(s)
Estado de Conciencia/fisiología , Corteza Prefrontal/metabolismo , Receptores Colinérgicos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/química , Anestesia General , Animales , Eliminación de Gen , Isoflurano/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Fenotipo , Polimorfismo Genético , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos
10.
J Control Release ; 243: 1-10, 2016 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-27671875

RESUMEN

Detection of intracerebral targets with imaging probes is challenging due to the non-permissive nature of blood-brain barrier (BBB). The present work describes two novel single-domain antibodies (VHHs or nanobodies) that specifically recognize extracellular amyloid deposits and intracellular tau neurofibrillary tangles, the two core lesions of Alzheimer's disease (AD). Following intravenous administration in transgenic mouse models of AD, in vivo real-time two-photon microscopy showed gradual extravasation of the VHHs across the BBB, diffusion in the parenchyma and labeling of amyloid deposits and neurofibrillary tangles. Our results demonstrate that VHHs can be used as specific BBB-permeable probes for both extracellular and intracellular brain targets and suggest new avenues for therapeutic and diagnostic applications in neurology.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Ovillos Neurofibrilares/inmunología , Placa Amiloide/inmunología , Anticuerpos de Dominio Único/inmunología , Administración Intravenosa , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Microscopía/métodos , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular
11.
Biochem Pharmacol ; 97(4): 378-387, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26206184

RESUMEN

Neuronal nicotinic acetylcholine receptors (nAChRs) play an important role in a variety of modulatory and regulatory processes including neurotransmitter release and synaptic transmission in various brain regions of the central nervous system (CNS). Glutamate is the principal excitatory neurotransmitter in the brain and the glutamatergic system participates in the pathophysiology of several neuropsychiatric disorders. Underpinning the importance of nAChRs, many studies demonstrated that nAChRs containing the α7 subunit facilitate glutamate release. Here, we review the currently available body of experimental evidence pertaining to α7 subunit containing nAChRs in their contribution to the modulation of glutamatergic neurotransmission, and we highlight the role of α7 in synaptic plasticity, the morphological and functional maturation of the glutamatergic system and therefore its important contribution in the modulation of neural circuits of the CNS.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enfermedad de Alzheimer/metabolismo , Humanos , Esquizofrenia/metabolismo , Tabaquismo/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética
12.
Prion ; 6(5): 470-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22918434

RESUMEN

Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrP (C) into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrP (Sc) . Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrP (C) and its conversion to the abnormal isoforms of PrP (Sc) in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrP (Sc) , thus establishing a class of compounds with a promising therapeutic use against prion diseases.


Asunto(s)
Benzoxazinas/farmacología , Proteínas PrPSc/antagonistas & inhibidores , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Animales , Benzoxazinas/química , Línea Celular Tumoral , Ratones , Proteínas PrPC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA