Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Acc Chem Res ; 57(9): 1372-1383, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38590049

RESUMEN

ConspectusThe COVID-19 pandemic further demonstrated the need for usable, reliable, and cost-effective point-of-care diagnostics that can be broadly deployed, ideally for self-testing at home. Antigen tests using more-detectable reporter labels (usually at the cost of reader complexity) achieve better diagnostic sensitivity, supporting the value of higher-analytical-sensitivity reporter technologies in lateral flow.We developed a new approach to simple, inexpensive lateral flow assays (LFAs) of great sensitivity, based on the glow stick peroxyoxalate chemistry widely used in emergency settings and in children's toys. At the peak of the COVID-19 pandemic, we had the opportunity to participate in the pandemic-driven NIH Rapid Acceleration of Diagnostics (RADx) initiative aiming to develop a deployable lateral flow diagnostic for SARS-CoV-2 nucleoprotein based on our novel glow stick-inspired light-emitting reporter technology. During this project, we screened more than 250 antibody pairs for analytical sensitivity and specificity directly in LFA format, using recombinant nucleoprotein and then gamma-irradiated virions spiked into negative nasal swab extracts. Membranes and other LFA materials and swabs and extraction reagent components also were screened and selected. Optimization of conjugate preparation and spraying as well as pretreatment/conditioning of the sample pad led to the final optimized LFA strip. Technology development also included optimization of excitation liquid enclosed in disposable droppers, design of a custom cartridge and smartphone-based reader, and app development, even a prototype reader usable with any mobile phone. Excellent preclinical performance was first demonstrated with contrived samples and then with leftover clinical samples. Moving beyond traditional academic focus areas, we were able to establish a quality management system (QMS), produce large numbers of customized LFA cassettes by contract injection molding, build in-house facilities to assemble and store thousands of complete tests for verification and validation and usability studies, and source kitting/packaging services and quality standard reagents and build partnerships for clinical translation, regulatory guidance, scale up, and market deployment. We were not able to bring this early stage technology to the point of commercialization within the limited time and resources available, but we did achieve strong proof-of-concept and advance translational aspects of the platform including initial high-performance LFAs, reading by the iPhone app using only a $2 plastic dark box with no lens, and convenient, usable excitation liquid packaging in droppers manufacturable in very large numbers.In this Account, we aim to provide a concise overview of our 18-month sprint toward the practical development of a deployable antigen lateral flow assay under pandemic conditions and the challenges and successes experienced by our team. We highlight what it takes to coach a technically savvy but commercially inexperienced academic team through the accelerated translation of an early stage technology into a useful product. Finally, we provide a guided tutorial and workflow to empower others interested in the rapid development of translatable LFAs.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virología , Humanos , SARS-CoV-2/aislamiento & purificación , Pruebas en el Punto de Atención , Prueba Serológica para COVID-19/métodos , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Proteínas de la Nucleocápside de Coronavirus/análisis , Prueba de COVID-19/métodos
2.
Analyst ; 149(5): 1665, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38348476

RESUMEN

Correction for 'Smartphone-read phage lateral flow assay for point-of-care detection of infection' by Maede Chabi, et al., Analyst, 2023, 148, 839-848, https://doi.org/10.1039/D2AN01499H.

3.
Heliyon ; 9(11): e21404, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027884

RESUMEN

Background: The rapid growth of Qatar in the last two decades has attracted a large influx of immigrant craft and manual workers (CMWs) seeking employment in jobs associated with food handling, domestic service, and construction. Nearly 60 % of Qatar's population are expatriates CMWs, including many from hyperendemic countries for HEV. Thus, estimating the seroprevalence of HEV in Qatar and understanding its epidemiology is essential for public health efforts to control HEV transmission in Qatar. Methods: Blood samples from 2670 CMWs were collected between 2020 and 2021. All samples were tested for HEV-IgG antibodies. Positive HEV-IgG samples were tested for HEV-IgM antibodies, and those positives were also tested for viral antigens using an HEV-Ag ELISA kit and HEV-RNA by RT-PCR to confirm current HEV infections. Results: The seroprevalence of HEV-IgG was 27.3 % (729/2670; 95 % CI: 25.6-29.0). Of those HEV-IgG positive, 8.23 % (60/729; 95 % CI: 6.30-10.5) were HEV-IgM positive. Of the IgM-positive samples, 2 were HEV-RNA positive (3.39 %; 95 % CI: 0.40-11.7), and 1 was HEV-Ag positive (1.69 %; 95 % CI: 0.04-9.09). In addition, HEV-IgG seroprevalence was associated with age and nationality, with the highest seroprevalence in participants from Egypt (IgG 60.0 %; IgM 5.56 %), Pakistan (IgG 59.0 %; IgM 2.24 %), Nepal (IgG 29.3 %; IgM 2.70 %), Bangladesh (IgG 27.8 %; IgM 2.45 %), and India (IgG 23.9 %; IgM 2.43 %). Conclusion: In this study, we showed that the seroprevalence of HEV among CMWs was slightly higher than what was previously reported among the urban population in Qatar (2013-2016).

4.
Analyst ; 148(22): 5582-5587, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37819257

RESUMEN

Glow enzyme-linked immunosorbent assay (glow ELISA) uses inexpensive and shelf-stable glow stick reagents to chemically excite fluorescent reporters, obviating the need for excitation light sources, filters, and complex optics. It achieves excellent limits of detection while offering portability and equipment cost comparable to lateral flow immunoassays.


Asunto(s)
Indicadores y Reactivos , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo
5.
Anal Chim Acta ; 1277: 341674, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37604625

RESUMEN

Lateral flow assays (LFAs) provide a simple and quick option for diagnosis and are widely adopted for point-of-care or at-home tests. However, their sensitivity is often limited. Most LFAs only allow 50 µL samples while various sample types such as saliva could be collected in much larger volumes. Adapting LFAs to accommodate larger sample volumes can improve assay sensitivity by increasing the number of target analytes available for detection. Here, a simple agglutination system comprising biotinylated antibody (Ab) and streptavidin (SA) is presented. The Ab and SA agglutinate into large aggregates due to multiple biotins per Ab and multiple biotin binding sites per SA. Dynamic light scattering (DLS) measurements showed that the agglutinated aggregate could reach a diameter of over 0.5 µm and over 1.5 µm using poly-SA. Through both experiments and Monte Carlo modeling, we found that high valency and equivalent concentrations of the two aggregating components were critical for successful agglutination. The simple agglutination system enables antigen capture from large sample volumes with biotinylated Ab and a swift transition into aggregates that can be collected via filtration. Combining the agglutination system with conventional immunoassays, an agglutination assay is proposed that enables antigen detection from large sample volumes using an in-house 3D-printed device. As a proof-of-concept, we developed an agglutination assay targeting SARS-CoV-2 nucleocapsid antigen for COVID-19 diagnosis from saliva. The assay showed a 10-fold sensitivity enhancement when increasing sample volume from 50 µL to 2 mL, with a final limit of detection (LoD) of 10 pg mL-1 (∼250 fM). The assay was further validated in negative saliva spiked with gamma-irradiated SARS-CoV-2 and showed an LoD of 250 genome copies per µL. The proposed agglutination assay can be easily developed from existing LFAs to facilitate the processing of large sample volumes for improved sensitivity.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos , Biotina , Aglutinación
6.
PLoS Negl Trop Dis ; 17(7): e0011436, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37399214

RESUMEN

Early diagnosis of infectious diseases improves outcomes by enabling earlier delivery of effective treatment, and helps prevent further transmission by undiagnosed persons. We demonstrated a proof-of-concept assay combining isothermal amplification and lateral flow assay (LFA) for early diagnosis of cutaneous leishmaniasis, a vector-borne infectious disease that affects ca. 700,000 to 1.2 million people annually. Conventional molecular diagnostic techniques based on polymerase chain reaction (PCR) require complex apparatus for temperature cycling. Recombinase polymerase amplification (RPA) is an isothermal DNA amplification method that has shown promise for use in low-resource settings. Combined with lateral flow assay as the readout, RPA-LFA can be used as a point-of-care diagnostic tool with high sensitivity and specificity, but reagent costs can be problematic. In this work, we developed a highly-sensitive smartphone-based RPA-LFA for the detection of Leishmania panamensis DNA using blue-emitting [(Sr0.625Ba0.375)1.96Eu0.01Dy0.03]MgSi2O7 (SBMSO) persistent luminescent nanophosphors as LFA reporters. The greater detectability of nanophosphors allows the use of a reduced volume of RPA reagents, potentially reducing the cost of RPA-LFA. The limit of detection (LOD) of RPA with gold nanoparticle-based LFA readout is estimated at 1 parasite per reaction, but LOD can be 100-fold better, 0.01 parasites per reaction, for LFA based on SBMSO. This approach may be useful for sensitive and cost-effective point-of-care diagnosis and contribute to improved clinical and economic outcomes, especially in resource-limited settings.


Asunto(s)
Leishmania , Nanopartículas del Metal , Humanos , Leishmania/genética , ADN de Cinetoplasto , Recombinasas , Oro , Teléfono Inteligente , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
7.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37350754

RESUMEN

The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.

8.
Pract Lab Med ; 35: e00314, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181647

RESUMEN

Objective: Anti-Müllerian Hormone (AMH) is a quantitative marker for ovarian reserve and is used to predict response during ovarian stimulation. Streamlining testing to the clinic or even to the physician's office would reduce inconvenience, turnaround time, patient stress and potentially also the total cost of testing, allowing for more frequent monitoring. In this paper, AMH is used as a model biomarker to describe the rational development and optimization of sensitive, quantitative, clinic-based rapid diagnostic tests. Design and Methods: We developed a one-step lateral-flow europium (III) chelate-based fluorescent immunoassay (LFIA) for the detection of AMH on a portable fluorescent reader, optimizing the capture/detection antibodies, running buffer, and reporter conjugates. Results: A panel of commercial calibrators was used to develop a standard curve to determine the analytical sensitivity (LOD = 0.41 ng/ml) and the analytical range (0.41-15.6 ng/ml) of the LFIA. Commercial controls were then tested to perform an initial evaluation of the prototype performance and showed a high degree of precision (Control I CV 2.18%; Control II CV 3.61%) and accuracy (Control I recovery 126%; Control II recovery 103%). Conclusions: This initial evaluation suggests that, in future clinical testing, the AMH LFIA will likely have the capability of distinguishing women with low ovarian reserve (<1 ng/ml AMH) from women with normal (1-4 ng/ml AMH) ovarian reserve. Furthermore, the LFIA demonstrated a wide linear range, indicating the assay's applicability to the detection of other health conditions such as PCOS, which requires AMH measurement at higher concentrations (>6 ng/ml).

9.
Analyst ; 148(4): 839-848, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36645184

RESUMEN

The COVID-19 pandemic has highlighted the urgent need for sensitive, affordable, and widely accessible testing at the point of care. Here we demonstrate a new, universal LFA platform technology using M13 phage conjugated with antibodies and HRP enzymes that offers high analytical sensitivity and excellent performance in a complex clinical matrix. We also report its complete integration into a sensitive chemiluminescence-based smartphone-readable lateral flow assay for the detection of SARS-CoV-2 nucleoprotein. We screened 84 anti-nucleoprotein monoclonal antibody pairs in phage LFA and identified an antibody pair that gave an LoD of 25 pg mL-1 nucleoprotein in nasal swab extract using a FluorChem gel documentation system and 100 pg mL-1 when the test was imaged and analyzed by an in-house-developed smartphone reader. The smartphone-read LFA signals for positive clinical samples tested (N = 15, with known Ct) were statistically different (p < 0.001) from signals for negative clinical samples (N = 11). The phage LFA technology combined with smartphone chemiluminescence imaging can enable the timely development of ultrasensitive, affordable point-of-care testing platforms for SARS-CoV-2 and beyond.


Asunto(s)
Bacteriófagos , COVID-19 , Humanos , Sistemas de Atención de Punto , COVID-19/diagnóstico , SARS-CoV-2 , Teléfono Inteligente , Pandemias , Anticuerpos , Pruebas en el Punto de Atención , Sensibilidad y Especificidad
10.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674796

RESUMEN

Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.


Asunto(s)
Inteínas , Staphylococcus aureus , Humanos , Inteínas/genética , Ligandos , Termodinámica , Inmunoglobulina G , Calorimetría/métodos , Unión Proteica
11.
Biotechnol Bioeng ; 120(2): 482-490, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36225160

RESUMEN

In the manufacture of therapeutic monoclonal antibodies, the clarified cell culture fluid (CCF) is typically loaded onto an initial protein A affinity capture column. Imperfect mass transfer and loading to maximum capacity can risk antibody breakthrough and loss of valuable product, but conservative underloading wastes expensive protein A resin. In addition, the effects of column fouling and ligand degradation require the frequent optimization of immunoglobulin G (IgG) loading to avoid wastage. Continuous real-time monitoring of IgG flowthrough is of great interest, therefore. We previously developed a fluorescence-based monitoring technology that allows batch mix-and-read mAb detection in the CCF. Here, we report the use of reporters immobilized on cyanogenbromide-activated Sepharose 4B resin for continuous detection of IgG in column breakthrough. The column effluent is continuously contacted with immobilized fluorescein-labeled Fc-binding ligands in a small monitoring column to produce an immediately-detectable change in fluorescence intensity. The technology allows rapid and reliable monitoring of IgG in a flowing stream of clarified CCF emerging from a protein A column, without prior sample preparation. We observed a significant change in fluorescence intensity at 0.5 g/L human IgG, sufficient to detect a 5% breakthrough of a 10 g/L load, within 18 s at a flow rate of 0.5 ml/min. The current small-scale technology is suitable for use in process development, but the chemistry should be readily adaptable to larger scale applications using fiber-optic sensors, and continuous IgG monitoring could be applicable in a variety of upstream and downstream process settings.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Humanos , Cromatografía de Afinidad , Proteína Estafilocócica A , Ligandos , Colorantes
12.
Anal Biochem ; 660: 114929, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270332

RESUMEN

Detection and quantification of antibodies, especially immunoglobulin G (IgG), is a cornerstone of ELISAs, many diagnostics, and the development of antibody-based drugs. Current state-of-the-art immunoassay techniques for antibody detection require species-specific secondary antibodies and carefully-controlled bioconjugations. Poor conjugation efficiency degrades assay performance and increases the risk of clinical false positives due to non-specific binding. We developed a generic, highly-sensitive platform for IgG quantification by fusing the IgG-Fc binding Z domain of Staphylococcal Protein A with the ultrabright bioluminescence reporter Nanoluc-luciferase (Nluc). We demonstrated the application of this fusion protein in a sandwich IgG detection immunoassay using surface-bound antigens to capture target IgG and protein A-Nanoluc fusion as the detector. We optimized the platform's sensitivity by incorporating multiple repeats of the Z domain into the fusion protein constructs. Using rabbit and mouse anti-SARS-CoV-2 Nucleoprotein IgGs as model analytes, we performed ELISAs in two different formats, either with SARS-CoV-2 Nucleoprotein as the capture antigen or with polyclonal chicken IgY as the capture antibody. Using standard laboratory equipment, the platform enabled the quantitation of antibody analytes at concentrations as low as 10 pg/mL (67 fM).


Asunto(s)
COVID-19 , Inmunoglobulina G , Ratones , Conejos , Animales , Proteína Estafilocócica A , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoensayo/métodos , Nucleoproteínas , Sensibilidad y Especificidad
13.
Commun Eng ; 22023.
Artículo en Inglés | MEDLINE | ID: mdl-38586601

RESUMEN

The COVID-19 pandemic has increased demand for point-of-care (POC) screening tests such as lateral flow assays (LFAs) and highlighted the need for sensitive and cost-effective POC diagnostic platforms. Here, we demonstrate an LFA platform using standard fluorescent nanoparticle reporters in which optical excitation is replaced by chemical excitation using the peroxyoxalate-based chemistry of inexpensive, shelf-stable glowsticks. The one-step chemi-excitation of fluorescent particles produces visible light readable by an unmodified smartphone, enhancing sensitivity while preserving simplicity and cost-effectiveness. Our Glow LFA detected the common model analyte human chorionic gonadotropin with a limit of detection (LoD) of 39 pg/mL-over ten times more sensitive than standard gold nanoparticles using the same antibodies. We also demonstrate its application to the detection of SARS-CoV-2 nucleoprotein at 100 pg/mL in nasal swab extract. Multiple fluorescent dyes can be chemi-excited by a single reagent, allowing for color multiplexing on a single LFA strip with a smartphone camera. The detection of three analytes on a single LFA test line was demonstrated using red, green, and blue fluorescent reporter particles, making glow LFA a promising platform for multiplexed detection.

14.
Front Immunol ; 13: 1044743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569940

RESUMEN

Introduction: The gold standard for diagnosis of active lupus nephritis (ALN), a kidney biopsy, is invasive with attendant morbidity and cannot be serially repeated. Urinary ALCAM (uALCAM) has shown high diagnostic accuracy for renal pathology activity in ALN patients. Methods: Lateral flow assays (LFA) for assaying uALCAM were engineered using persistent luminescent nanoparticles, read by a smartphone. The stability and reproducibility of the assembled LFA strips and freeze-dried conjugated nanoparticles were verified, as was analyte specificity. Results: The LFA tests for both un-normalized uALCAM (AUC=0.93) and urine normalizer (HVEM)-normalized uALCAM (AUC=0.91) exhibited excellent accuracies in distinguishing ALN from healthy controls. The accuracies for distinguishing ALN from all other lupus patients were 0.86 and 0.74, respectively. Conclusion: Periodic monitoring of uALCAM using this easy-to-use LFA test by the patient at home could potentially accelerate early detection of renal involvement or disease flares in lupus patients, and hence reduce morbidity and mortality.


Asunto(s)
Nefritis Lúpica , Humanos , Nefritis Lúpica/patología , Molécula de Adhesión Celular del Leucocito Activado , Reproducibilidad de los Resultados , Riñón/patología , Biomarcadores/orina
15.
Biosensors (Basel) ; 12(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36551027

RESUMEN

Rapidly growing interest in smartphone cameras as the basis of point-of-need diagnostic and bioanalytical technologies increases the importance of quantitative characterization of phone optical performance under real-world operating conditions. In the context of our development of lateral-flow immunoassays based on phosphorescent nanoparticles, we have developed a suite of tools for characterizing the temporal and spectral profiles of smartphone torch and flash emissions, and their dependence on phone power state. In this work, these tools are described and documented to make them easily available to others, and demonstrated by application to characterization of Apple iPhone 5s, iPhone 6s, iPhone 8, iPhone XR, and Samsung Note8 flash performance as a function of time and wavelength, at a variety of power settings. Flash and torch intensity and duration vary with phone state and among phone models. Flash has high variability when the battery charge is below 10%, thus, smartphone-based Point-of-Care (POC) tests should only be performed at a battery level of at least 15%. Some output variations could substantially affect the results of assays that rely on the smartphone flash.


Asunto(s)
Pruebas en el Punto de Atención , Teléfono Inteligente , Inmunoensayo
16.
J Agric Food Chem ; 70(43): 14084-14095, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36279293

RESUMEN

Adulteration and mislabeling of honey to mask its true origin have become a global concern. Pollen microscopy, the current gold standard for identifying honey's geographical and plant origins, is laborious, requires extensive training, and fails to identify filtered honey and honey spiked with pollen from a more favorable plant to disguise its origins. We successfully isolated pollen-free DNA from filtered honey using three types of adsorbents: (i) anti-dsDNA antibodies coupled to magnetic microspheres; (ii) anion-exchange adsorbent; and (iii) ceramic hydroxyapatite. The internal transcribed spacer 2 region of the captured pollen-free DNA was polymerase chain reaction-amplified and subjected to next-generation sequencing. Using an in-house bioinformatics pipeline, initial experiments showed that anion exchange had the greatest capacity to capture trace pollen-free DNA, and it was successfully applied to isolate DNA from five honey samples. Enrichment of trace pollen-free DNA from filtered honey samples opens a new approach for identifying the true origins of honey.


Asunto(s)
Miel , Miel/análisis , Polen/genética , Código de Barras del ADN Taxonómico , ADN
17.
Front Microbiol ; 13: 961093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003937

RESUMEN

Bacteriophage M13 virions are very stable nanoparticles that can be modified by chemical and genetic methods. The capsid proteins can be functionalized in a variety of chemical reactions without loss of particle integrity. In addition, Genetic Code Expansion (GCE) permits the introduction of non-canonical amino acids (ncAAs) into displayed peptides and proteins. The incorporation of ncAAs into phage libraries has led to the discovery of high-affinity binders with low nanomolar dissociation constant (K D) values that can potentially serve as inhibitors. This article reviews how bioconjugation and the incorporation of ncAAs during translation have expanded the chemistry of peptides and proteins displayed by M13 virions for a variety of purposes.

18.
MAbs ; 13(1): 1980178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34662534

RESUMEN

Antibodies and Fc fusion proteins are a rapidly growing class of pharmaceuticals. Cell culture and purification process development and operation require frequent measurement of product concentrations, commonly by complex enzyme-linked immunosorbent assay and high-performance liquid chromatography methods. Here we report a fast (<30 s), and simple antibody Fc assay based on mix-and-read reporting by fluorescence emission. A soluble fluorescein-labeled Fc-affinity reporter produced by standard peptide synthesis is mixed with an Fc-containing sample to produce an immediate shift in both fluorescence polarization and intensity, compatible with on- and at-line measurements and microbioreactor monitoring. We observed significant shifts in fluorescence intensity in Chinese hamster ovary cell culture fluid spiked with IgG and detected an adalimumab biosimilar down to 100 ng/mL (10-4 g/L), despite the interferents in the complex sample matrix. Neither the fluorescence polarization nor the fluorescence intensity assay is significantly affected by the addition of clarified lysate of 2 million CHO-k1 cells/mL, suggesting applicability even to cultures of low viability. Biochemical and molecular docking approaches suggest that the fluorescence intensity enhancement is caused by changes in the fluorophore's local microenvironment upon binding to IgG Fc, especially by interactions with Fc His433.Abbreviations: CCF: Cell Culture Fluid; CHO: Chinese Hamster Ovary cells; ELISA: Enzyme Linked Immunosorbent Assay; Fc: Fragment Crystallizable of antibody; HPLC: High-Performance Liquid Chromatography; HPßCD: hydroxypropyl-ß-cyclodextrin; IgG: ImmunoglobulinG; mAb: Monoclonal Antibody; PBS: Phosphate-Buffered Saline; PDB: Protein Data Bank; SpA: Staphylococcal protein A; SpG: Staphylococcal protein G.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Proteína Estafilocócica A , Animales , Células CHO , Cricetinae , Cricetulus , Fragmentos Fc de Inmunoglobulinas/química , Simulación del Acoplamiento Molecular
19.
Analyst ; 146(15): 4835-4840, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34198311

RESUMEN

We introduce analyte-dependent exclusion of reporter reagents from restricted-access adsorbents as the basis of an isocratic reporter-exclusion immunoassay for viruses, proteins, and other analytes. Capto™ Core 700 and related resins possess a noninteracting size-selective outer layer surrounding a high-capacity nonspecific mixed-mode capture adsorbent core. In the absence of analyte, antibody-enzyme reporter conjugates can enter the adsorbent and be captured, and their signal is lost. In the presence of large or artificially-expanded analytes, reporter reagents bind to analyte species to form complexes large enough to be excluded from the adsorbent core, allowing their signal to be observed. This assay principle is demonstrated using M13 bacteriophage virus and human chorionic gonadotropin as model analytes. The simple isocratic detection approach described here allows a rapid implementation of immunoassay for detection of a wide range of analytes and uses inexpensive, generally-applicable, and stable column materials instead of costly analyte-specific immunoaffinity adsorbents.


Asunto(s)
Bacteriófago M13 , Gonadotropina Coriónica , Humanos , Inmunoensayo , Indicadores y Reactivos
20.
Biosens Bioelectron ; 165: 112327, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729475

RESUMEN

Purification of therapeutic monoclonal antibodies usually involves a protein A affinity capture step. Because column breakthrough of antibody in complex, UV-absorbing culture fluid cannot be readily detected in real time, processes are designed so conservatively that column capacity is usually underutilized, wasting adsorbent and reducing productivity. We have developed a fluorescence-based monitoring technology which allows real-time mAb monitoring and used it to detect IgG in column breakthrough. The column effluent was continuously contacted with soluble fluorescein-labeled Fc-binding ligands to produce an immediately-detectable shift in both fluorescence polarization and intensity. To extend the upper limit of inlet flow rate, a 14:1 split-ratio flow splitter was tested with an inlet flow of 15 mL/min (0.9 L/h), producing a sampling stream at 1 mL/min while still enabling continuous detection functionality. We observed significant shifts in fluorescence intensity in CHO cell culture fluid spiked with human IgG, and detected 0.02-0.1 g/L human IgG in protein A column breakthrough at a flow velocity of 80 cm/h. The increase in fluorescence intensity upon 0.1% breakthrough of an 1 g/L feed was used to trigger column switching using Python-enabled two-way communication with the standard Unicorn OPC process control protocol. The technology allows rapid, continuous and reliable monitoring of IgG in a flowing process stream, without elaborate sample preparation.


Asunto(s)
Técnicas Biosensibles , Proteína Estafilocócica A , Animales , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA