Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Total Environ ; 935: 173365, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777066

RESUMEN

We hypothesize that aquatic ecosystem services are likely to be inequitably accessible and addressing this hypothesis requires systematic assessment at regional and national scales. We used existing data from large-scale aquatic monitoring programs (National Coastal Condition Assessment, National Lakes Assessment) to examine relationships between ecosystem condition, approximating a subset of cultural and provisioning services, and inequality (population below poverty level, minority population). We also assessed whether monitoring sites equitably represented the gradient of socioeconomic backgrounds. Several water quality indicators were associated with significantly different minority and low-income percentages; however, the effect size was generally small, with the exception of nitrogen condition status. Minority communities were somewhat under-represented when comparing the distribution of all census blocks to those in proximity to monitoring sites. Analyses were sensitive to the skewed distribution of monitoring sites with a low frequency of observations at the more socially vulnerable part of the gradient. We discuss implications of these findings for improving the representation of vulnerable communities in large-scale monitoring programs.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Factores Socioeconómicos , Monitoreo del Ambiente/métodos , Calidad del Agua , Conservación de los Recursos Naturales/métodos , Lagos
2.
PLoS One ; 18(10): e0292988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883482

RESUMEN

Quantifying the relationship between phytoplankton and zooplankton may offer insight into zooplankton sensitivity to shifting phytoplankton assemblages and the potential impacts of producer-consumer decoupling on the rest of the food web. We analyzed 18 years (2001-2018) of paired phytoplankton and zooplankton samples collected as part of the United States Environmental Protection Agency (U.S. EPA) Great Lakes Biology Monitoring Program to examine both the long-term and seasonal relationships between zooplankton and phytoplankton across all five Laurentian Great Lakes. We also analyzed effects of phytoplankton diversity on zooplankton biomass, diversity, and predator-prey (zooplanktivore/grazer) ratios. Across the Great Lakes, there was a weak positive correlation between total algal biovolume and zooplankton biomass in both spring and summer. The relationship was weaker and not consistently positive within individual lakes. These trends were consistent over time, providing no evidence of increasing decoupling over the study period. Zooplankton biomass was weakly negatively correlated with algal diversity across lakes, whereas zooplankton diversity was unaffected. These relationships did not change when we considered only the edible phytoplankton fraction, possibly due to the high correlation between total and edible phytoplankton biovolume in most of these lakes. Lack of strong coupling between these producer and consumer assemblages may be related to lagging responses by the consumers, top-down effects from higher-level consumers, or other confounding factors. These results underscore the difficulty in predicting higher trophic level responses, including zooplankton, from changes in phytoplankton assemblages.


Asunto(s)
Fitoplancton , Zooplancton , Animales , Fitoplancton/fisiología , Zooplancton/fisiología , Biomasa , Lagos , Cadena Alimentaria
3.
Science ; 377(6605): 523-527, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901146

RESUMEN

Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that marsh sediment accretion increases in parity with sea level rise, seemingly confirming previously claimed marsh resilience. However, subsidence of the substrate shows a nonlinear increase with accretion. As a result, marsh elevation gain is constrained in relation to sea level rise, and deficits emerge that are consistent with Holocene observations of tidal marsh vulnerability.


Asunto(s)
Elevación del Nivel del Mar , Humedales , Incertidumbre
4.
J Great Lakes Res ; 44(4): 650-659, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30505066

RESUMEN

It is well documented that the introduction of dreissenid bivalves in eutrophic lakes is usually associated with decreases in turbidity and total phosphorus concentrations in the water column, concomitant increases in water clarity, as well as other physical changes to habitat that may have cascading effects on other species in the invaded waterbody. In contrast, there is a paucity of data on the ecological ramifications of the elimination or decline of dreissenids due to pollution, bottom hypoxia, or other mechanisms. Using data collected by the U.S. Environmental Protection Agency Great Lakes National Program Office's Long-Term Biology and Water Quality Monitoring Programs, we analyzed the impacts of the hypoxia-induced declines in Dreissena densities in the central basin of Lake Erie on major water chemistry and physical parameters. Our analysis revealed that the decline in Dreissena density in the central basin was concomitant with a decrease in spring dissolved silica concentrations and an increase in total phosphorus and near bottom turbidity not seen in the western or eastern basins. In contrast, opposite patterns in water quality were observed in the eastern basin, which was characterized by a high and relatively stable Dreissena population. We are the first to report that dreissenid-related shifts in water quality of invaded waterbodies are reversible by documenting that the sharp decline of Dreissena in the central basin of Lake Erie was concomitant with a shift from clear to turbid water.

5.
J Great Lakes Res ; 44(4): 573-589, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31156289

RESUMEN

The lower food webs of Lake Huron and Lake Michigan have experienced similar reductions in the spring phytoplankton bloom and summer populations of Diporeia and cladocerans since the early 2000s. At the same time phosphorus concentrations have decreased and water clarity and silica concentrations have increased. Key periods of change, identified by using a method based on sequential t-tests, were 2003-2005 (Huron) and 2004-2006 (Michigan). Estimated filtration capacity suggests that dreissenid grazing would have been insufficient to directly impact phytoplankton in the deeper waters of either lake by this time (mid 2000s). Despite some evidence of decreased chlorophyll:TP ratios, consistent with grazing limitation of phytoplankton, the main impact of dreissenids on the offshore waters was probably remote, e.g., through interception of nutrients by nearshore populations. A mass balance model indicates that decreased phosphorus loading could not account for observed in-lake phosphorus declines. However, model-inferred internal phosphorus dynamics were strongly correlated between the lakes, with periods of increased internal loading in the 1990s, and increased phosphorus loss starting in 2000 in Lake Michigan and 2003 in Lake Huron, prior to dreissenid expansion into deep water of both lakes. This suggests a limited role for deep populations of dreissenids in the initial phosphorus declines in the lakes, and also suggests a role for meteorological influence on phosphorus dynamics. The high synchrony in lower trophic level changes between Lake Michigan and Lake Huron suggests that both lakes should be considered when investigating underlying causal factors of these changes.

6.
Hydrobiologia ; 750(1): 147-170, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-32214452

RESUMEN

Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species ("invasional meltdown"). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.

7.
PLoS One ; 9(7): e101499, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25006811

RESUMEN

Watershed-scale anthropogenic stressors have profound effects on aquatic communities. Although several functional traits of stream macroinvertebrates change predictably in response to land development and urbanization, little is known about macroinvertebrate functional responses in lakes. We assessed functional community structure, functional diversity (Rao's quadratic entropy) and voltinism in macroinvertebrate communities sampled across the full gradient of anthropogenic stress in Laurentian Great Lakes coastal wetlands. Functional diversity and voltinism significantly decreased with increasing development, whereas agriculture had smaller or non-significant effects. Functional community structure was affected by watershed-scale development, as demonstrated by an ordination analysis followed by regression. Because functional community structure affects energy flow and ecosystem function, and functional diversity is known to have important implications for ecosystem resilience to further environmental change, these results highlight the necessity of finding ways to remediate or at least ameliorate these effects.


Asunto(s)
Ephemeroptera , Odonata , Animales , Biodiversidad , Cadena Alimentaria , Great Lakes Region , Dinámica Poblacional , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA