Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Death Dis ; 15(3): 228, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509074

RESUMEN

Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Due to its fast proliferation, diffusive growth and therapy resistance survival times are less than two years for patients with IDH-wildtype GBM. GBM is noted for the considerable cellular heterogeneity, high stemness indices and abundance of the glioma stem-like cells known to support tumor progression, therapeutic resistance and recurrence. Doublesex- and mab-3-related transcription factor a2 (DMRTA2) is involved in maintaining neural progenitor cells (NPC) in the cell cycle and its overexpression suppresses NPC differentiation. Despite the reports showing that primary GBM originates from transformed neural stem/progenitors cells, the role of DMRTA2 in gliomagenesis has not been elucidated so far. Here we show the upregulation of DMRTA2 expression in malignant gliomas. Immunohistochemical staining showed the protein concentrated in small cells with high proliferative potential and cells localized around blood vessels, where it colocalizes with pericyte-specific markers. Knock-down of DMRTA2 in human glioma cells impairs proliferation but not viability of the cells, and affects the formation of the tumor spheres, as evidenced by strong decrease in the number and size of spheres in in vitro cultures. Moreover, the knockdown of DMRTA2 in glioma spheres affects the stabilization of the glioma stem-like cell-dependent tube formation in an in vitro angiogenesis assay. We conclude that DMRTA2 is a new player in gliomagenesis and tumor neovascularization and due to its high expression in malignant gliomas could be a biomarker and potential target for new therapeutic strategies in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Células-Madre Neurales , Adulto , Humanos , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Glioblastoma/metabolismo , Glioma/patología , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo
2.
Int J Cancer ; 153(5): 1003-1015, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338006

RESUMEN

High-grade gliomas are aggressive, deadly primary brain tumors. Median survival of patients with glioblastoma (GBM, WHO grade 4) is 14 months and <10% of patients survive 2 years. Despite improved surgical strategies and forceful radiotherapy and chemotherapy, the prognosis of GBM patients is poor and did not improve over decades. We performed targeted next-generation sequencing with a custom panel of 664 cancer- and epigenetics-related genes, and searched for somatic and germline variants in 180 gliomas of different WHO grades. Herein, we focus on 135 GBM IDH-wild type samples. In parallel, mRNA sequencing was accomplished to detect transcriptomic abnormalities. We present the genomic alterations in high-grade gliomas and the associated transcriptomic patterns. Computational analyses and biochemical assays showed the influence of TOP2A variants on enzyme activities. In 4/135 IDH-wild type GBMs we found a novel, recurrent mutation in the TOP2A gene encoding topoisomerase 2A (allele frequency [AF] = 0.03, 4/135 samples). Biochemical assays with recombinant, wild type (WT) and variant proteins demonstrated stronger DNA binding and relaxation activity of the variant protein. GBM patients carrying the altered TOP2A had shorter overall survival (median OS 150 vs 500 days, P = .0018). In the GBMs with the TOP2A variant we found transcriptomic alterations consistent with splicing dysregulation. luA novel, recurrent TOP2A mutation, which was found exclusively in four GBMs, results in the TOP2A E948Q variant with altered DNA binding and relaxation activities. The deleterious TOP2A mutation resulting in transcription deregulation in GBMs may contribute to disease pathology.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/metabolismo , Glioma/genética , Pronóstico , ADN , Isocitrato Deshidrogenasa/genética , Mutación
4.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34830180

RESUMEN

Neuroblastoma (NB) and rhabdomyosarcoma (RMS), the most common pediatric extracranial solid tumors, still represent an important clinical challenge since no effective treatment is available for metastatic and recurrent disease. Hence, there is an urgent need for the development of new chemotherapeutics to improve the outcome of patients. Betulin (Bet), a triterpenoid from the bark of birches, demonstrated interesting anti-cancer potential. The modification of natural phytochemicals with evidenced anti-tumor activity, including Bet, is one of the methods of receiving new compounds for potential implementation in oncological treatment. Here, we showed that two acetylenic synthetic Bet derivatives (ASBDs), EB5 and EB25/1, reduced the viability and proliferation of SK-N-AS and TE671 cells, as measured by MTT and BrdU tests, respectively. Moreover, ASBDs were also more cytotoxic than temozolomide (TMZ) and cisplatin (cis-diaminedichloroplatinum [II], CDDP) in vitro, and the combination of EB5 with CDDP enhanced anti-cancer effects. We also showed the slowdown of cell cycle progression at S/G2 phases mediated by EB5 using FACS flow cytometry. The decreased viability and proliferation of pediatric cancers cells after treatment with ASBDs was linked to the reduced activity of kinases Akt, Erk1/2 and p38 and the induction of apoptosis, as investigated using Western blotting and FACS. In addition, in silico analyses of the ADMET profile found EB5 to be a promising anti-cancer drug candidate that would benefit from further investigation.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Triterpenos/farmacología , Acetileno/química , Antineoplásicos/farmacología , Betula/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Estructura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Temozolomida/farmacología , Triterpenos/síntesis química , Triterpenos/química
5.
Nat Commun ; 12(1): 3621, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131149

RESUMEN

Chromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


Asunto(s)
Cromatina , Glioma/genética , Secuencias Reguladoras de Ácidos Nucleicos , Sitios de Unión , Neoplasias Encefálicas/genética , Inmunoprecipitación de Cromatina , ADN/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Epigenómica , Proteína Forkhead Box M1 , Expresión Génica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Código de Histonas , Histonas , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
6.
Cancers (Basel) ; 13(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804155

RESUMEN

Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.

7.
J Mol Med (Berl) ; 99(2): 241-255, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33215304

RESUMEN

High-grade gliomas (HGGs), the most common and aggressive primary brain tumors in adults, inevitably recur due to incomplete surgery or resistance to therapy. Intratumoral genomic and cellular heterogeneity of HGGs contributes to therapeutic resistance, recurrence, and poor clinical outcomes. Transcriptomic profiles of HGGs at recurrence have not been investigated in detail. Using targeted sequencing of cancer-related genes and transcriptomics, we identified single nucleotide variations, small insertions and deletions, copy number aberrations (CNAs), as well as gene expression changes and pathway deregulation in 16 pairs of primary and recurrent HGGs. Most of the somatic mutations identified in primary HGGs were not detected after relapse, suggesting a subclone substitution during the tumor progression. We found a novel frameshift insertion in the ZNF384 gene which may contribute to extracellular matrix remodeling. An inverse correlation of focal CNAs in EGFR and PTEN genes was detected. Transcriptomic analysis revealed downregulation of genes involved in messenger RNA splicing, cell cycle, and DNA repair, while genes related to interferon signaling and phosphatidylinositol (PI) metabolism are upregulated in secondary HGGs when compared to primary HGGs. In silico analysis of the tumor microenvironment identified M2 macrophages and immature dendritic cells as enriched in recurrent HGGs, suggesting a prominent immunosuppressive signature. Accumulation of those cells in recurrent HGGs was validated by immunostaining. Our findings point to a substantial transcriptomic deregulation and a pronounced infiltration of immature dendritic cells in recurrent HGG, which may impact the effectiveness of frontline immunotherapies in the GBM management. KEY MESSAGES: Most of the somatic mutations identified in primary HGGs were not detected after relapse. Focal CNAs in EGFR and PTEN genes are inversely correlated in primary and recurrent HGGs. Transcriptomic changes and distinct immune-related signatures characterize HGG recurrence. Recurrent HGGs are characterized by a prominent infiltration of immature dendritic and M2 macrophages.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioma/genética , Glioma/inmunología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Adulto , Anciano , Variaciones en el Número de Copia de ADN , Células Dendríticas/inmunología , Receptores ErbB/genética , Femenino , Humanos , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Mutación , Fosfohidrolasa PTEN/genética , Transactivadores/genética , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
8.
Anticancer Res ; 40(11): 6151-6158, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33109552

RESUMEN

BACKGROUND/AIM: Glioma is the most malignant tumour of the human brain still lacking effective treatment modalities. Betulin, a pentacyclic triterpene abundantly found in the birch bark, has been shown to demonstrate interesting anti-cancer activity towards many cancer cells. We determined the effects of acetylenic synthetic betulin derivatives (ASBDs) as anti-tumour agents on glioma cells in vitro. MATERIALS AND METHODS: T98G and C6 glioma cell viability and proliferation were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and BrdU (bromo deoxyuridine) test, respectively. Cell-cycle progression and induction of apoptosis were investigated with flow cytometry. RESULTS: ASBDs significantly decreased glioma cell viability/survival and inhibited proliferation in a dose-dependent manner in vitro. Moreover, ASBDs were more cytotoxic than clinically used chemotherapeutics - temozolomide and cisplatin. CONCLUSION: ASBDs may be considered for further study as potent anti-tumour agents in glioma treatment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Triterpenos/farmacología , Acetileno/química , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Humanos , Ratas , Temozolomida/farmacología , Triterpenos/química
9.
Cancers (Basel) ; 12(10)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050631

RESUMEN

Anti-tumour therapies eliminate proliferating tumour cells by induction of DNA damage, but genomic aberrations or transcriptional deregulation may limit responses to therapy. Glioblastoma (GBM) is a malignant brain tumour, which recurs inevitably due to chemo- and radio-resistance. Human RecQ helicases participate in DNA repair, responses to DNA damage and replication stress. We explored if a helicase RECQL4 contributes to gliomagenesis and responses to chemotherapy. We found upregulated RECQL4 expression in GBMs associated with poor survival of GBM patients. Increased levels of nuclear and cytosolic RECQL4 proteins were detected in GBMs on tissue arrays and in six glioma cell lines. RECQL4 was detected both in cytoplasm and mitochondria by Western blotting and immunofluorescence. RECQL4 depletion in glioma cells with siRNAs and CRISPR/Cas9 did not affect basal cell viability, slightly impaired DNA replication, but induced profound transcriptomic changes and increased chemosensitivity of glioma cells. Sphere cultures originated from RECQL4-depleted cells had reduced sphere forming capacity, stronger responded to temozolomide upregulating cell cycle inhibitors and pro-apoptotic proteins. RECQL4 deficiency affected mitochondrial network and reduced mitochondrial membrane polarization in LN18 glioblastoma cells. We demonstrate that targeting RECQL4 overexpressed in glioblastoma could be a new strategy to sensitize glioma cells to chemotherapeutics.

10.
Clin Epigenetics ; 11(1): 11, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654849

RESUMEN

BACKGROUND: The diagnosis of glioblastoma (GBM), a most aggressive primary brain tumor with a median survival of 14.6 months, carries a dismal prognosis. GBMs are characterized by numerous genetic and epigenetic alterations, affecting patient survival and treatment response. Epigenetic mechanisms are deregulated in GBM as a result of aberrant expression/activity of epigenetic enzymes, including histone deacetylases (HDAC) which remove acetyl groups from histones regulating chromatin accessibility. Nevertheless, the impact of class/isoform-selective HDAC inhibitors (HDACi) on glioma cells, including glioma stem cells, had not been systematically determined. RESULTS: Comprehensive analysis of the public TCGA dataset revealed the increased expression of HDAC 1, 2, 3, and 7 in malignant gliomas. Knockdown of HDAC 1 and 2 in human GBM cells significantly decreased cell proliferation. We tested the activity of 2 new and 3 previously described HDACi with different class/isoform selectivity on human GBM cells. All tested compounds exerted antiproliferative properties on glioma cells. However, the HDACi 1 and 4 blocked proliferation of glioblastoma cells leading to G2/M growth arrest without affecting astrocyte survival. Moreover, 1 and 4 at low micromolar concentrations displayed cytotoxic and antiproliferative effects on sphere cultures enriched in glioma stem cells. CONCLUSIONS: We identified two selective HDAC inhibitors that blocked proliferation of glioblastoma cells, but did not affect astrocyte survival. These new and highly effective inhibitors should be considered as promising candidates for further investigation in preclinical GBM models.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN/efectos de los fármacos , Glioma/genética , Inhibidores de Histona Desacetilasas/farmacología , Células Madre Neoplásicas/citología , Esferoides Celulares/citología , Benzamidas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética/efectos de los fármacos , Glioma/tratamiento farmacológico , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Histona Desacetilasas/genética , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Pirimidinas/farmacología , Esferoides Celulares/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
Pharm Biol ; 54(6): 1096-107, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26808720

RESUMEN

CONTEXT: Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. OBJECTIVE: This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. MATERIALS AND METHODS: Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 µg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 µg/mL LPS. RESULTS: trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 µg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 µg/mL) and (-)-α-pinene (IC50 value = 206.3 µg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 µg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 µg/mL. DISCUSSION AND CONCLUSIONS: Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences.


Asunto(s)
Antineoplásicos/farmacología , Biotecnología/métodos , Descubrimiento de Drogas/métodos , Terpenos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Biotransformación , Compuestos de Bifenilo/química , Supervivencia Celular/efectos de los fármacos , Chrysosporium/metabolismo , Colon/efectos de los fármacos , Colon/patología , Células HT29 , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mortierella/metabolismo , Óxido Nítrico/metabolismo , Picratos/química , Terpenos/aislamiento & purificación , Terpenos/metabolismo , Terpenos/toxicidad
12.
J Enzyme Inhib Med Chem ; 31(4): 608-18, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26114307

RESUMEN

A series of urea derivatives bearing nitroaryl moiety has been synthesized and assayed for their potential antiproliferative activities. Some of the tested compounds displayed activity in RK33 laryngeal cancer cells and TE671 rhabdomyosarcoma cells while being generally less toxic to healthy HSF human fibroblasts cells. One compound was demonstrated to be a moderate CDK2 inhibitor with IC50 = 14.3 µM. Its structure was solved by an X-ray crystallography and molecular modelling was performed to determine structure-activity relationship. Obtained compounds constitute novel structures and generally demonstrated greater cytotoxicity in comparison to cisplatin. This study offers new structural motifs with potential for further development.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Urea/análogos & derivados , Urea/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA