Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Infection ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700656

RESUMEN

PURPOSE: The influence of new SARS-CoV-2 variants on the post-COVID-19 condition (PCC) remains unanswered. Therefore, we examined the prevalence and predictors of PCC-related symptoms in patients infected with the SARS-CoV-2 variants delta or omicron. METHODS: We compared prevalences and risk factors of acute and PCC-related symptoms three months after primary infection (3MFU) between delta- and omicron-infected patients from the Cross-Sectoral Platform of the German National Pandemic Cohort Network. Health-related quality of life (HrQoL) was determined by the EQ-5D-5L index score and trend groups were calculated to describe changes of HrQoL between different time points. RESULTS: We considered 758 patients for our analysis (delta: n = 341; omicron: n = 417). Compared with omicron patients, delta patients had a similar prevalence of PCC at the 3MFU (p = 0.354), whereby fatigue occurred most frequently (n = 256, 34%). HrQoL was comparable between the groups with the lowest EQ-5D-5L index score (0.75, 95% CI 0.73-0.78) at disease onset. While most patients (69%, n = 348) never showed a declined HrQoL, it deteriorated substantially in 37 patients (7%) from the acute phase to the 3MFU of which 27 were infected with omicron. CONCLUSION: With quality-controlled data from a multicenter cohort, we showed that PCC is an equally common challenge for patients infected with the SARS-CoV-2 variants delta and omicron at least for the German population. Developing the EQ-5D-5L index score trend groups showed that over two thirds of patients did not experience any restrictions in their HrQoL due to or after the SARS-CoV-2 infection at the 3MFU. CLINICAL TRAIL REGISTRATION: The cohort is registered at ClinicalTrials.gov since February 24, 2021 (Identifier: NCT04768998).

2.
Viruses ; 16(4)2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675888

RESUMEN

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Asunto(s)
Antivirales , COVID-19 , Fluoxetina , SARS-CoV-2 , Sertralina , Replicación Viral , SARS-CoV-2/efectos de los fármacos , Sertralina/farmacología , Fluoxetina/farmacología , Replicación Viral/efectos de los fármacos , Humanos , Antivirales/farmacología , Chlorocebus aethiops , Células Vero , COVID-19/virología , Animales , Tratamiento Farmacológico de COVID-19
3.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967532

RESUMEN

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Asunto(s)
Citomegalovirus , Proteínas del Envoltorio Viral , Recién Nacido , Humanos , Glicoproteínas de Membrana , Anticuerpos Neutralizantes , Células B de Memoria , Anticuerpos Antivirales , Análisis de la Célula Individual
4.
Front Immunol ; 14: 1150667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520539

RESUMEN

Background: Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are increasingly observed in vaccinated individuals. Immune responses towards SARS-CoV-2 variants, particularly Omicron-BA.5, are poorly understood. We investigated the humoral and cellular immune responses of hospitalized COVID-19 patients during Delta and Omicron infection waves. Methods: The corresponding SARS-CoV-2 variant of the respective patients were identified by whole genome sequencing. Humoral immune responses were analyzed by ELISA and a cell culture-based neutralization assay against SARS-CoV-2 D614G isolate (wildtype), Alpha, Delta (AY.43) and Omicron (BA.1 and BA.5). Cellular immunity was evaluated with an IFN-γ ELISpot assay. Results: On a cellular level, patients showed a minor IFN-γ response after stimulating PBMCs with mutated regions of SARS-CoV-2 variants. Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced. Double-vaccinated patients with Delta breakthrough infection showed a significantly increased neutralizing antibody response against Delta compared to double-vaccinated uninfected controls (median complete neutralization titer (NT100) 640 versus 80, p<0.05). Omicron-BA.1 infection increased neutralization titers against BA.1 in double-vaccinated patients (median NT100 of 160 in patients versus 20 in controls, p=0.07) and patients that received booster vaccination (median NT100 of 50 in patients versus 20 in controls, p=0.68). For boosted patients with BA.5 breakthrough infection, we found no enhancing effect on humoral immunity against SARS-CoV-2 variants. Conclusion: Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced in SARS-CoV-2 breakthrough infections. Delta and Omicron-BA.1 but not Omicron-BA.5 infections boosted the humoral immunity in double-vaccinated patients and patients with booster vaccination. Despite BA.5 breakthrough infection, those patients may still be vulnerable for reinfections with BA.5 or other newly emerging variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Infección Irruptiva , Anticuerpos Neutralizantes , Ensayo de Immunospot Ligado a Enzimas , Inmunidad Celular
5.
Front Microbiol ; 14: 1196721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333646

RESUMEN

The role of adaptive SARS-CoV-2 specific immunity in post-acute sequelae of COVID-19 (PASC) is not well explored, although a growing population of convalescent COVID-19 patients with manifestation of PASC is observed. We analyzed the SARS-CoV-2-specific immune response, via pseudovirus neutralizing assay and multiparametric flow cytometry in 40 post-acute sequelae of COVID-19 patients with non-specific PASC manifestation and 15 COVID-19 convalescent healthy donors. Although frequencies of SARS-CoV-2-reactive CD4+ T cells were similar between the studied cohorts, a stronger SARS-CoV-2 reactive CD8+ T cell response, characterized by IFNγ production and predominant TEMRA phenotype but low functional TCR avidity was detected in PASC patients compared to controls. Of interest, high avidity SARS-CoV-2-reactive CD4+ and CD8+ T cells were comparable between the groups demonstrating sufficient cellular antiviral response in PASC. In line with the cellular immunity, neutralizing capacity in PASC patients was not inferior compared to controls. In conclusion, our data suggest that PASC may be driven by an inflammatory response triggered by an expanded population of low avidity SARS-CoV-2 reactive pro-inflammatory CD8+ T cells. These pro-inflammatory T cells with TEMRA phenotype are known to be activated by a low or even without TCR stimulation and lead to a tissue damage. Further studies including animal models are required for a better understanding of underlying immunopathogensis. Summary: A CD8+ driven persistent inflammatory response triggered by SARS-CoV-2 may be responsible for the observed sequelae in PASC patients.

6.
Viruses ; 15(5)2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37243248

RESUMEN

Acute SARS-CoV-2 infection has been associated with false-positive HIV screening tests. The underlying mechanism is unclear, and for clinical cases, evidence beyond a temporal connection is missing. However, several experimental studies point toward SARS-CoV-2 spike/HIV-1 envelope (Env) cross-reactive antibodies (Abs) as a cause. Here, we present the first case of an individual with convalescent SARS-CoV-2 infection testing false positive in both an HIV screening and confirmatory test. Longitudinal sampling showed that the phenomenon was temporary but lasted for at least 3 months before waning. After excluding a multitude of common determinants for assay interference, we further show by antibody depletion studies that SARS-CoV-2-spike-specific Abs did not cross-react with HIV-1 gp120 in the patient sample. No additional case of HIV test interference was identified in a cohort of 66 individuals who presented to a post-COVID-19 outpatient clinic. We conclude the SARS-CoV-2-associated HIV test interference to be a temporary process capable of disturbing both screening and confirmatory assays. The assay interference is short-lived and/or rare but should be considered by physicians as a possible explanation for unexpected HIV diagnostic results in patients with a recent SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico , Pruebas Diagnósticas de Rutina , Glicoproteína de la Espiga del Coronavirus , Prueba de COVID-19
7.
Infection ; 51(6): 1703-1716, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37243960

RESUMEN

PURPOSE: Vaccination against Streptococcus pneumoniae is recommended in transplant recipients to reduce the morbidity and mortality from invasive pneumococcal disease. Previous studies indicate that transplant recipients can produce specific antibodies after vaccination with the 13-valent pneumococcal conjugate vaccine Prevenar 13 (PCV13) or the pneumococcal polysaccharide vaccine Pneumovax 23 (PPSV23). National guidelines recommend sequential vaccination with PCV13 followed by PPSV23 in kidney transplant patients. However, there are currently no data on the serological response in kidney transplant recipients, who received a sequential vaccination with PCV13 and PPSV23. METHODS: In the current study, we sequentially vaccinated 46 kidney transplant recipients with PCV13 and PPSV23 and determined global and serotype-specific anti-pneumococcal antibody responses in the year following vaccination. RESULTS: Serotype-specific and global anti-pneumococcal antibody concentrations were significantly higher compared to baseline. We observed that serotype-specific antibody responses varied by serotype (between 2.2- and 2.9-fold increase after 12 months). The strongest responses after 12 months were detected against the serotypes 9N (2.9-fold increase) and 14 (2.8-fold increase). Global antibody responses also varied with respect to immunoglobulin class. IgG2 revealed the highest increase (2.7-fold), IgM the lowest (1.7-fold). Sequential vaccination with both vaccines achieved higher antibody levels in comparison with a historical cohort studied at our institute, that was vaccinated with PCV13 alone. During the 12-months follow-up period, none of the patients developed pneumococcal-associated pneumonia or vaccination-related allograft rejection. CONCLUSION: In conclusion, we strongly recommend sequential vaccination over single immunization in kidney transplant recipients.


Asunto(s)
Trasplante de Riñón , Infecciones Neumocócicas , Humanos , Formación de Anticuerpos , Receptores de Trasplantes , Anticuerpos Antibacterianos , Vacunas Conjugadas , Método Doble Ciego , Vacunas Neumococicas , Streptococcus pneumoniae , Infecciones Neumocócicas/prevención & control , Vacunación
8.
Front Immunol ; 14: 1143870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006290

RESUMEN

Background: Herpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk. Methods: We established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations. Results: In total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies. Conclusion: This study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Estudios Retrospectivos , Proteínas del Envoltorio Viral , Inmunización Pasiva , Anticuerpos Bloqueadores
9.
Hum Immunol ; 84(8): 393-400, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36925435

RESUMEN

The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) can elicits pro-viral activities by down-modulating immune responses. We analysed soluble forms of HLA-G, IL-6 and IL-10 as well as on immune effector cell expression of HLA-G and its cognate ILT-2 receptor in peripheral blood obtained from hospitalised and convalescent COVID-19 patients. Compared with convalescents (N = 202), circulating soluble HLA-G levels (total and vesicular-bound molecules) were significantly increased in hospitalised patients (N = 93) irrespective of the disease severity. During COVID-19, IL-6 and IL-10 levels were also elevated. Regarding the immune checkpoint expression of HLA-G/ILT-2 on peripheral immune effector cells, the frequencies of membrane-bound HLA-G on CD3+ and CD14+ cells were almost identical in patients during and post COVID-19, while the frequency of ILT-2 receptor on CD3+ and CD14+ cells was increased during acute infection. A multi-parametric correlation analysis of soluble HLA-G forms with IL-6, IL-10, activation markers CD25 and CD154, HLA-G, and ILT-2 expression on immune cells revealed a strong positive correlation of soluble HLA-G forms with membrane-bound HLA-G molecules on CD3+/CD14+ cells only in convalescents. During COVID-19, only vesicular-bound HLA-G were positively correlated with the activation marker CD25 on T cells. Thus, our data suggest that the elevated levels of soluble HLA-G in COVID-19 are due to increased expression in organ tissues other than circulating immune effector cells. The concomitant increased expression of soluble HLA-G and ILT-2 receptor frequencies supports the concept that the immune checkpoint HLA-G/ILT-2 plays a role in the immune-pathogenesis of COVID-19.


Asunto(s)
COVID-19 , Antígenos HLA-G , Humanos , COVID-19/metabolismo , Antígenos HLA-G/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Linfocitos T
10.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36851312

RESUMEN

BACKGROUND: It is widely accepted that SARS-CoV-2 causes a dysregulation of immune and coagulation processes. In severely affected patients, viral sepsis may result in life endangering multiple organ dysfunction. Furthermore, most therapies for COVID-19 patients target either the immune system or coagulation processes. As the exact mechanism causing SARS-CoV-2-induced morbidity and mortality was unknown, we started an in-depth analysis of immunologic and coagulation processes. METHODS: 127 COVID-19 patients were treated at the University Hospital Essen, Germany, between May 2020 and February 2022. Patients were divided according to their maximum COVID-19 WHO ordinal severity score (WHO 0-10) into hospitalized patients with a non-severe course of disease (WHO 4-5, n = 52) and those with a severe course of disease (WHO 6-10, n = 75). Non-infected individuals served as healthy controls (WHO 0, n = 42). Blood was analyzed with respect to cell numbers, clotting factors, as well as pro- and anti-inflammatory mediators in plasma. As functional parameters, phagocytosis and inflammatory responses to LPS and antigen-specific stimulation were determined in monocytes, granulocytes, and T cells using flow cytometry. FINDINGS: In the present study, immune and coagulation systems were analyzed simultaneously. Interestingly, many severe COVID-19 patients showed an upregulation of pro-inflammatory mediators and at the same time clear signs of immunosuppression. Furthermore, severe COVID-19 patients not only exhibited a disturbed immune system, but in addition showed a pronounced pro-coagulation phenotype with impaired fibrinolysis. Therefore, our study adds another puzzle piece to the already complex picture of COVID-19 pathology implying that therapies in COVID-19 must be individualized. CONCLUSION: Despite years of research, COVID-19 has not been understood completely and still no therapies exist, fitting all requirements and phases of COVID-19 disease. This observation is highly reminiscent to sepsis. Research in sepsis has been going on for decades, while the disease is still not completely understood and therapies fitting all patients are lacking as well. In both septic and COVID-19 patients, immune activation can be accompanied by immune paralysis, complicating therapeutic intervention. Accordingly, therapies that lower immune activation may cause detrimental effects in patients, who are immune paralyzed by viral infections or sepsis. We therefore suggest individualizing therapies and to broaden the spectrum of immunological parameters analyzed before therapy. Only if the immune status of a patient is understood, can a therapeutic intervention be successful.

11.
Front Cell Infect Microbiol ; 12: 949036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325470

RESUMEN

Type I interferons (IFNs) present the first line of defense against viral infections, providing antiviral, immunomodulatory and antiproliferative effects. The type I IFN family contains 12 IFNα subtypes and IFNß, and although they share the same receptor, they are classified as non-redundant, capable to induce a variety of different IFN-stimulated genes. However, the biological impact of individual subtypes remains controversial. Recent data propose a subtype-specificity of type I IFNs revealing unique effector functions for different viruses and thus expanding the implications for IFNα-based antiviral immunotherapies. Despite extensive research, drug-resistant infections with herpes simplex virus type 1 (HSV-1), which is the common agent of recurrent orogenital lesions, are still lacking a protective or curing therapeutic. However, due to the risk of generalized infections in immunocompromised hosts as well as the increasing incidence of resistance to conventional antiherpetic agents, HSV infections raise major health concerns. Based on their pleiotropic effector functions, the application of type I IFNs represents a promising approach to inhibit HSV-1 replication, to improve host immunity and to further elucidate their qualitative differences. Here, selective IFNα subtypes and IFNß were evaluated for their therapeutic potential in genital HSV-1 infections. Respective in vivo studies in mice revealed subtype-specific differences in the reduction of local viral loads. IFNß had the strongest antiviral efficacy against genital HSV-1 infection in mice, whereas IFNα1, IFNα4, and IFNα11 had no impact on viral loads. Based on flow cytometric analyses of underlying immune responses at local and peripheral sites, these differences could be further assigned to specific modulations of the antiviral immunity early during HSV-1 infection. IFNß led to enhanced systemic cytokine secretion and elevated cytotoxic responses, which negatively correlated with viral loads in the vaginal tract. These data provide further insights into the diversity of type I IFN effector functions and their impact on the immunological control of HSV-1 infections.


Asunto(s)
Herpes Genital , Herpes Simple , Herpesvirus Humano 1 , Interferón Tipo I , Femenino , Ratones , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Herpes Genital/tratamiento farmacológico , Herpes Genital/patología , Interferón beta , Interferón-alfa , Genitales/patología , Replicación Viral
12.
Front Immunol ; 13: 1031254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389833

RESUMEN

Emerging variants of concern (VOC) raise obstacles in shaping vaccination strategies and ending the pandemic. Vaccinated SARS-CoV-2 convalescence shapes the current immune dynamics. We analyzed the SARS-CoV-2 VOC-specific cellular and humoral response of 57 adults: 42 convalescent mRNA vaccinated patients (C+V+), 8 uninfected mRNA vaccinated (C-V+) and 7 unvaccinated convalescent individuals (C+V-). While C+V+ demonstrated a superior humoral SARS-CoV-2 response against all analyzed VOC (alpha, delta, omicron) compared to C-V+ and C+V-, SARS-CoV-2 reactive CD4+ and CD8+ T cells, which can cross-recognize the alpha, delta and omicron VOC after infection and/or vaccination were observed in all there groups without significant differences between the groups. We observed a preserved cross-reactive C+V+ and C-V+ T cell memory. An inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C+V+ was observed, as well as an inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C-V+. Adaptive immunity generated after SARS-CoV-2 infection and vaccination leads to superior humoral immune response against VOC compared to isolated infection or vaccination. Despite the apparent loss of neutralization potential caused by viral evolution, a preserved SARS-CoV-2 reactive T cell response with a robust potential for cross-recognition of the alpha, delta and omicron VOC was detected in all studied cohorts. Our results may have implications on current vaccination strategies.


Asunto(s)
COVID-19 , Inmunidad Humoral , Adulto , Humanos , SARS-CoV-2 , Convalecencia , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunación , ARN Mensajero
13.
Nanoscale Adv ; 4(21): 4502-4516, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36341304

RESUMEN

Azide-terminated ultrasmall gold nanoparticles (2 nm gold core) were covalently functionalized with alkyne-terminated small-interfering siRNA duplexes by copper-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry). The nanoparticle core was visualized by transmission electron microscopy. The number of attached siRNA molecules per nanoparticle was determined by a combination of atomic absorption spectroscopy (AAS; for gold) and UV-Vis spectroscopy (for siRNA). Each nanoparticle carried between 6 and 10 siRNA duplex molecules which corresponds to a weight ratio of siRNA to gold of about 2.2 : 1. Different kinds of siRNA were conjugated to the nanoparticles, depending on the gene to be silenced. In general, the nanoparticles were readily taken up by cells and highly efficient in gene silencing, in contrast to free siRNA. This was demonstrated in HeLa-eGFP cells (silencing of eGFP) and in LPS-stimulated macrophages (silencing of NF-κB). Furthermore, we demonstrated that nanoparticles carrying antiviral siRNA potently inhibited the replication of Herpes simplex virus 2 (HSV-2) in vitro. This highlights the strong potential of siRNA-functionalized ultrasmall gold nanoparticles in a broad spectrum of applications, including gene silencing and treatment of viral infections, combined with a minimal dose of gold.

14.
Front Immunol ; 13: 980698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311723

RESUMEN

Immunocompromised patients are at increased risk for a severe course of COVID-19. Treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection with anti-SARS-CoV-2 monoclonal antibodies (mAbs) has become widely accepted. However, the effects of mAb treatment on the long-term primary cellular response to SARS-CoV-2 are unknown. In the following study, we investigated the long-term cellular immune responses to SARS-CoV-2 Spike S1, Membrane (M) and Nucleocapsid (N) antigens using the ELISpot assay in unvaccinated, mAb-treated immunocompromised high-risk patients. Anti-SARS-CoV-2 mAb untreated though vaccinated COVID-19 immunocompromised patients, vaccinated SARS-CoV-2 immunocompromised patients without COVID-19 and vaccinated healthy control subjects served as control groups. The cellular immune response was determined at a median of 5 months after SARS-CoV-2 infection. Our data suggest that immunocompromised patients develop an endogenous long-term cellular immune response after COVID-19, although at low levels. A better understanding of the cellular immune response will help guide clinical decision making for these vulnerable patient cohorts.


Asunto(s)
COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Anticuerpos Monoclonales/uso terapéutico , Proteínas de la Nucleocápside , Anticuerpos Antivirales , Huésped Inmunocomprometido , Inmunidad Celular
15.
Vaccines (Basel) ; 10(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016235

RESUMEN

In kidney transplant (KTX) patients, immune responses after booster vaccination against SARS-CoV-2 are inadequately examined. We analyzed these patients a median of four months after a third/fourth vaccination and compared them to healthy controls. Cellular responses were analyzed by interferon-gamma (IFN-γ) and interleukin-2 (IL-2) ELISpot assays. Neutralizing antibody titers were assessed against SARS-CoV-2 D614G (wild type) and the variants alpha, delta, and omicron by a cell culture-based neutralization assay. Humoral immunity was also determined by a competitive fluorescence assay, using 11 different variants of SARS-CoV-2. Antibody ratios were measured by ELISA. KTX patients showed significantly lower SARS-CoV-2-specific IFN-γ responses after booster vaccination than healthy controls. However, SARS-CoV-2-specific IL-2 responses were comparable to the T cell responses of healthy controls. Cell culture-based neutralizing antibody titers were 1.3-fold higher in healthy controls for D614G, alpha, and delta, and 7.8-fold higher for omicron (p < 0.01). Healthy controls had approximately 2-fold higher concentrations of potential neutralizing antibodies against all 11 variants than KTX patients. However, more than 60% of the KTX patients displayed antibodies to variants of SARS-CoV-2. Thus, KTX patients should be partly protected, due to neutralizing antibodies to variants of SARS-CoV-2 or by cross-reactive T cells, especially those producing IL-2.

16.
Vaccines (Basel) ; 10(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35746452

RESUMEN

Solid organ transplant recipients have an up to ninefold higher risk of varicella-zoster virus (VZV) reactivation than the general population. Due to lifelong immunosuppressive therapy, vaccination against VZV may be less effective in kidney transplant (KTX) recipients. In the current study, twelve female and 17 male KTX recipients were vaccinated twice with the adjuvanted, recombinant zoster vaccine Shingrix™, which contains the VZV glycoprotein E (gE). Cellular immunity against various VZV antigens was analyzed with interferon-gamma ELISpot. We observed the strongest vaccination-induced changes after stimulation with a gE peptide pool. One month after the second vaccination, median responses were 8.0-fold higher than the responses prior to vaccination (p = 0.0006) and 4.8-fold higher than responses after the first vaccination (p = 0.0007). After the second vaccination, we observed an at least twofold increase in ELISpot responses towards gE peptides in 22 out of 29 patients (76%). Male sex, good kidney function, early time point after transplantation, and treatment with tacrolimus or mycophenolate were correlated significantly with higher VZV-specific cellular immunity, whereas diabetes mellitus was correlated with impaired responses. Thus, our data indicate that vaccination with Shingrix™ significantly augmented cellular, VZV gE-specific immunity in KTX recipients, which was dependent on several covariates.

17.
Vaccines (Basel) ; 10(6)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35746580

RESUMEN

Protecting vulnerable groups from severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is mandatory. Immune responses after a third vaccination against SARS-CoV-2 are insufficiently studied in patients after hematopoietic stem-cell transplantation (HSCT). We analyzed immune responses before and after a third vaccination in HSCT patients and healthy controls. Cellular immunity was assessed using interferon-gamma (IFN-γ) and interleukin-2 (IL-2) ELISpots. Furthermore, this is the first report on neutralizing antibodies against 11 variants of SARS-CoV-2, analyzed by competitive fluorescence assay. Humoral immunity was also measured by neutralization tests assessing cytopathic effects and by ELISA. Neither HSCT patients nor healthy controls displayed significantly higher SARS-CoV-2-specific IFN-γ or IL-2 responses after the third vaccination. However, after the third vaccination, cellular responses were 2.6-fold higher for IFN-γ and 3.2-fold higher for IL-2 in healthy subjects compared with HSCT patients. After the third vaccination, neutralizing antibodies were significantly higher (p < 0.01) in healthy controls, but not in HSCT patients. Healthy controls vs. HSCT patients had 1.5-fold higher concentrations of neutralizing antibodies against variants and 1.2-fold higher antibody concentrations against wildtype. However, half of the HSCT patients exhibited neutralizing antibodies to variants of SARS-CoV-2, which increased only slightly after a third vaccination.

18.
Viruses ; 14(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35458476

RESUMEN

The novel, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a pandemic of acute respiratory illness worldwide and remains a huge threat to the healthcare system's capacity to respond to COVID-19. Elderly and immunocompromised patients are at increased risk for a severe course of COVID-19. These high-risk groups have been identified as developing diminished humoral and cellular immune responses. Notably, SARS-CoV-2 RNA remains detectable in nasopharyngeal swabs of these patients for a prolonged period of time. These factors complicate the clinical management of these vulnerable patient groups. To date, there are no well-defined guidelines for an appropriate duration of isolation for elderly and immunocompromised patients, especially in hospitals or nursing homes. The aim of the present study was to characterize at-risk patient cohorts capable of producing a replication-competent virus over an extended period after symptomatic COVID-19, and to investigate the humoral and cellular immune responses and infectivity to provide a better basis for future clinical management. In our cohort, the rate of positive viral cultures and the sensitivity of SARS-CoV-2 antigen tests correlated with higher viral loads. Elderly patients and patients with diabetes mellitus had adequate cellular and humoral immune responses to SARS-CoV-2 infection, while immunocompromised patients had reduced humoral and cellular immune responses. Our patient cohort was hospitalized for longer compared with previously published cohorts. Longer hospitalization was associated with a high number of nosocomial infections, representing a potential hazard for additional complications to patients. Most importantly, regardless of positive SARS-CoV-2 RNA detection, no virus was culturable beyond a cycle threshold (ct) value of 33 in the majority of samples. Our data clearly indicate that elderly and diabetic patients develop a robust immune response to SARS-CoV-2 and may be safely de-isolated at a ct value of more than 35.


Asunto(s)
COVID-19 , Diabetes Mellitus , Anciano , Hospitales , Humanos , Huésped Inmunocomprometido , Monitorización Inmunológica , ARN Viral , SARS-CoV-2
19.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214785

RESUMEN

This study analyzed binding and neutralizing antibody titers up to 6 months after standard vaccination with BNT162b2 (two doses of 30 µg each) in SARS-CoV-2 naïve patients (n = 59) on hemodialysis. Humoral vaccine responses were measured before and 6, 12, and 24 weeks after the first vaccination. A chemiluminescent immunoassay (CLIA) was used to quantify SARS-CoV-2 IgG against the spike glycoprotein. SARS-CoV-2 neutralizing activity was tested against the wild-type virus. A multivariable binary regression model was used to identify risk factors for the absence of humoral immune responses at 6 months. At week 6, vaccine-specific seroconversion was detected in 96.6% of all patients with median anti-SARS-CoV-2 IgGs of 918 BAU/mL. At weeks 12 and 24, seroconversion rates decreased to 91.5% and 79.7%, and corresponding median binding antibody titers declined to 298 BAU/mL and 89 BAU/mL, respectively. Neutralizing antibodies showed a decay from 79.6% at week 6 to 32.8% at week 24. The risk factor with the strongest association for vanishing immune responses was low serum albumin (p = 0.018). Regarding vaccine-specific humoral responses 6 months after the standard BNT162b2 vaccination schedule, SARS-CoV-2 naïve patients receiving hemodialysis must be considered at risk of becoming infected with SARS-CoV-2 and being infectious.

20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35131898

RESUMEN

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interferón-alfa/farmacología , SARS-CoV-2/efectos de los fármacos , Transcriptoma , Replicación Viral/efectos de los fármacos , Animales , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Clonación Molecular , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Interferón-alfa/genética , Interferón-alfa/inmunología , Ratones , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/farmacología , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Transducción de Señal , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA