Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Endocrinol ; 190(6): 479-488, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38857188

RESUMEN

OBJECTIVES: The etiology of central precocious puberty (CPP) has expanded with identification of new genetic causes, including the monogenic deficiency of Makorin-Ring-Finger-Protein-3 (MKRN3). We aimed to assess the prevalence of CPP causes and the predictors of genetic involvement in this phenotype. DESIGN: A retrospective cohort study for an etiological survey of patients with CPP from a single academic center. METHODS: All patients with CPP had detailed medical history, phenotyping, and brain magnetic resonance imaging (MRI); those with negative brain MRI (apparently idiopathic) were submitted to genetic studies, mainly DNA sequencing studies, genomic microarray, and methylation analysis. RESULTS: We assessed 270 patients with CPP: 50 (18.5%) had CPP-related brain lesions (34 [68%] congenital lesions), whereas 220 had negative brain MRI. Of the latter, 174 (165 girls) were included for genetic studies. Genetic etiologies were identified in 22 patients (20 girls), indicating an overall frequency of genetic CPP of 12.6% (22.2% in boys and 12.1% in girls). The most common genetic defects were MKRN3, Delta-Like-Non-Canonical-Notch-Ligand-1 (DLK1), and Methyl-CpG-Binding-Protein-2 (MECP2) loss-of-function mutations, followed by 14q32.2 defects (Temple syndrome). Univariate logistic regression identified family history (odds ratio [OR] 3.3; 95% CI 1.3-8.3; P = .01) and neurodevelopmental disorders (OR 4.1; 95% CI 1.3-13.5; P = .02) as potential clinical predictors of genetic CPP. CONCLUSIONS: Distinct genetic causes were identified in 12.6% patients with apparently idiopathic CPP, revealing the genetic etiology as a relevant cause of CPP in both sexes. Family history and neurodevelopmental disorders were suggested as predictors of genetic CPP. We originally proposed an algorithm to investigate the etiology of CPP including genetic studies.


Asunto(s)
Pubertad Precoz , Humanos , Pubertad Precoz/genética , Pubertad Precoz/etiología , Pubertad Precoz/epidemiología , Femenino , Masculino , Niño , Estudios Retrospectivos , Preescolar , Imagen por Resonancia Magnética , Ribonucleoproteínas/genética , Estudios de Cohortes , Ubiquitina-Proteína Ligasas/genética , Mutación , Encéfalo/diagnóstico por imagen
3.
Biochem Genet ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649558

RESUMEN

Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.

4.
Head Neck ; 46(5): 985-1000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482546

RESUMEN

OBJECTIVE: This study used array comparative genomic hybridization to assess copy number alterations (CNAs) involving miRNA genes in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA), residual PA, and carcinoma ex pleomorphic adenoma (CXPA). MATERIALS AND METHODS: We analyzed 13 PA, 4 RPA, 29 CXPA, and 14 residual PA using Nexus Copy Number Discovery software. The miRNAs genes affected by CNAs were evaluated based on their expression patterns and subjected to pathway enrichment analysis. RESULTS: Across the groups, we found 216 CNAs affecting 2261 miRNA genes, with 117 in PA, 59 in RPA, 846 in residual PA, and 2555 in CXPA. The chromosome 8 showed higher involvement in altered miRNAs in PAs and CXPA patients. Six miRNA genes were shared among all groups. Additionally, miR-21, miR-455-3p, miR-140, miR-320a, miR-383, miR-598, and miR-486 were prominent CNAs found and is implicated in carcinogenesis of several malignant tumors. These miRNAs regulate critical signaling pathways such as aerobic glycolysis, fatty acid biosynthesis, and cancer-related pathways. CONCLUSION: This study was the first to explore CNAs in miRNA-encoding genes in the PA-CXPA sequence. The findings suggest the involvement of numerous miRNA genes in CXPA development and progression by regulating oncogenic signaling pathways.


Asunto(s)
Adenocarcinoma , Adenoma Pleomórfico , MicroARNs , Neoplasias de las Glándulas Salivales , Humanos , Adenoma Pleomórfico/genética , Adenoma Pleomórfico/patología , Variaciones en el Número de Copia de ADN , Neoplasias de las Glándulas Salivales/patología , MicroARNs/genética , Hibridación Genómica Comparativa , Transformación Celular Neoplásica/patología , Adenocarcinoma/patología
5.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504027

RESUMEN

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Asunto(s)
Cromosomas , Variaciones en el Número de Copia de ADN , Humanos , Inversión Cromosómica , Secuencia de Bases , Células Germinativas , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
6.
Curr Obes Rep ; 13(2): 313-337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38277088

RESUMEN

Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.


Asunto(s)
Obesidad , Humanos , Obesidad/genética , Discapacidad Intelectual/genética , Síndrome , Fenotipo , Síndrome de Bardet-Biedl/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Discapacidades del Desarrollo/genética , Síndrome de Alstrom/genética
7.
Mol Neurobiol ; 61(8): 5230-5247, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38180615

RESUMEN

Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.


Asunto(s)
Microcefalia , Trastornos del Neurodesarrollo , Humanos , Microcefalia/genética , Brasil , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Niño , Preescolar , Adolescente , Secuenciación del Exoma , Síndrome , Adulto Joven , Estudios de Cohortes , Adulto , Lactante
8.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168413

RESUMEN

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis, and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, whole-genome sequencing (WGS), RNA-seq and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined WGS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints match the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2Mb region on chromosome 9 with a SINE element insertion at the more distal breakpoint. Interestingly, this hypothesized genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by RNA-seq on blood from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p segregating with a familial congenital clinical trait, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.

10.
Appl. cancer res ; 37: 1-7, 2017. ilus
Artículo en Inglés | LILACS, Inca | ID: biblio-911514

RESUMEN

Primary liver cancers are rare in children, and the most common type is hepatoblastoma (HB), an embryonal tumor with histological features that resemble different stages of liver cell differentiation. However, mainly because of its rarity, molecular data on HB tumorigenesis remain scarce. This article reviews the current knowledge regarding genetic and epigenetic alterations reported in HB cases, with emphasis on the recent findings of next-generation sequencing studies (AU)


Asunto(s)
Humanos , Niño , Hepatoblastoma/genética , Neoplasias de Células Germinales y Embrionarias/genética , Predisposición Genética a la Enfermedad , Epigenómica , Neoplasias Hepáticas/genética , Mutación
11.
Braz. j. otorhinolaryngol. (Impr.) ; 82(6): 687-694, Oct.-Dec. 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-828255

RESUMEN

Abstract Introduction: A key step of cancer development is the progressive accumulation of genomic changes resulting in disruption of several biological mechanisms. Carcinoma ex-pleomorphic adenoma (CXPA) is an aggressive neoplasm that arises from a pleomorphic adenoma. CXPA derived from a recurrent PA (RPA) has been rarely reported, and the genomic changes associated with these tumors have not yet been studied. Objective: We analyzed CXPA from RPAs and RPAs without malignant transformation using array-comparative genomic hybridization (array-CGH) to identify somatic copy number alterations and affected genes. Methods: DNA samples extracted from FFPE tumors were submitted to array-CGH investigation, and data was analyzed by Nexus Copy Number Discovery Edition v.7. Results: No somatic copy number alterations were found in RPAs without malignant transformation. As for CXPA from RPA, although genomic profiles were unique for each case, we detected some chromosomal regions that appear to be preferentially affected by copy number alterations. The first case of CXPA-RPA (frankly invasive myoepithelial carcinoma) showed copy number alterations affecting 1p36.33p13, 5p and chromosomes 3 and 8. The second case of CXPA-RPA (frankly invasive epithelial-myoepithelial carcinoma) showed several alterations at chromosomes 3, 8, and 16, with two amplifications at 8p12p11.21 and 12q14.3q21.2. The third case of CXPA-RPA (minimally invasive epithelial-myoepithelial carcinoma) exhibited amplifications at 12q13.3q14.1, 12q14.3, and 12q15. Conclusion: The occurrence of gains at chromosomes 3 and 8 and genomic amplifications at 8p and 12q, mainly those encompassing the HMGA2, MDM2, WIF1, WHSC1L1, LIRG3, CDK4 in CXAP from RPA can be a significant promotional factor in malignant transformation.


Resumo Introdução: Uma etapa fundamental do desenvolvimento do câncer é o acúmulo progressivo de alterações genômicas, resultando na ruptura de vários mecanismos biológicos. Carcinoma ex-adenoma pleomórfico (CXAP) é uma neoplasia agressiva que surge a partir de um adenoma pleomórfico. O CXAP derivado de um AP recorrente (APR) foi raramente relatado e, até o momento, as alterações genômicas associadas a esses tumores não foram estudados. Objetivo: Avaliar as diferenças entre os CXAPs decorrentes de APRs e os APRs sem transformações malignas usando hibridização genômica comparativa em microarrays (array Comparative Genomic Hibridization - aCGH) a fim de identificar alterações no número de cópias somáticas e os genes afetados. Método: Amostras de DNA extraídas de tumores provenientes de tecido emblocado em parafina foram submetidos à investigação com a técnica aCGH, e os dados foram analisados com o Nexus Copy Number Discovery Edition v.7. Resultados: Não observamos alterações no numero de cópias somáticas nos APRs sem transformação maligna. Quanto ao CXAP de APR, embora os perfis genômicos sejam exclusivos para cada caso, detectamos algumas regiões cromossômicas que pareciam ser preferencialmente afetadas por alterações no número de cópias. O primeiro caso de CXAP-APR (carcinoma mioepitelial francamente invasivo) apresentou alterações no numero de cópias afetando 1p36.33p13, 5p e cromossomos 3 e 8. O segundo caso de CXAP-APR (carcinoma epitelialmioepitelial francamente invasivo) apresentou várias alterações nos cromossomos 3, 8 e 16, com duas amplificações em 8p12p11.21 e 12q14.3q21.2. O terceiro caso de CXAP-APR (carcinoma epitelial-mioepitelial minimamente invasivo) apresentou amplificações em 12q13.3q14.1, 12q14.3, e 12q15. Conclusão: A ocorrência de ganhos de cromossomos 3 e 8, e as amplificações genômicas em 8p e 12q, principalmente aquelas que englobam os HMGA2, MDM2, WIF1, WHSC1L1, RG3, CDK4 no CXAP decorrente de APR podem ser fatores promocionais significativos para a transformação maligna.


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Anciano , Neoplasias de las Glándulas Salivales/genética , Transformación Celular Neoplásica/genética , Adenoma Pleomórfico/genética , Neoplasias de las Glándulas Salivales/patología , Transformación Celular Neoplásica/patología , Adenoma Pleomórfico/patología , Recurrencia Local de Neoplasia
12.
Appl. cancer res ; 32(4): 153-155, 2012. ilus, tab
Artículo en Inglés | LILACS, Inca | ID: lil-706013

RESUMEN

Introduction: Neurofibromatosis-Noonan syndrome is a clinical entity considered an extended Neurofibromatosis phenotype generally caused by different types of intragenic mutations at the NF1 gene. About 5%-10% of patients with neurofibromatosis diagnosis carry chromosomal microdeletions involving NF1, often presenting with a more severe phenotype than that observedin the patients carrying intragenic mutations; however, anticipating the presence of a deletion based only in the phenotype is not straightforward. Patient and Methods: Here we investigated by oligoarray-CGH (aCGH) the presence of a submicroscopic genomic rearrangement in a patientwith a clinical picture of Neurofibromatosis, and other characteristics compatible with Noonansyndrome. Results: The aCGH analysis revealed a germline de novo ~1.3 Mb microdeletion at 17q11.2 encompassing other coding genes besides the NF1 gene. Discussion: Up to now, thenumber of reported patients with Neurofibromatosis-Noonan syndrome carrying NF1 microdeletions is quite small. The continuous identification of patients carrying 17q11.2 deletions canhelp to establish a reliable genotype-phenotype relationship in this syndrome


Asunto(s)
Humanos , Neurofibromatosis , Síndrome de Noonan
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA