Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
bioRxiv ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39091821

RESUMEN

The ability to spatially map multiple layers of the omics information over different time points allows for exploring the mechanisms driving brain development, differentiation, arealization, and alterations in disease. Herein we developed and applied spatial tri-omic sequencing technologies, DBiT ARP-seq (spatial ATAC-RNA-Protein-seq) and DBiT CTRP-seq (spatial CUT&Tag-RNA-Protein-seq) together with multiplexed immunofluorescence imaging (CODEX) to map spatial dynamic remodeling in brain development and neuroinflammation. A spatiotemporal tri-omic atlas of the mouse brain was obtained at different stages from postnatal day P0 to P21, and compared to the regions of interest in the human developing brains. Specifically, in the cortical area, we discovered temporal persistence and spatial spreading of chromatin accessibility for the layer-defining transcription factors. In corpus callosum, we observed dynamic chromatin priming of myelin genes across the subregions. Together, it suggests a role for layer specific projection neurons to coordinate axonogenesis and myelination. We further mapped the brain of a lysolecithin (LPC) neuroinflammation mouse model and observed common molecular programs in development and neuroinflammation. Microglia, exhibiting both conserved and distinct programs for inflammation and resolution, are transiently activated not only at the core of the LPC lesion, but also at distal locations presumably through neuronal circuitry. Thus, this work unveiled common and differential mechanisms in brain development and neuroinflammation, resulting in a valuable data resource to investigate brain development, function and disease.

2.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39131371

RESUMEN

The development of the human neocortex is a highly dynamic process and involves complex cellular trajectories controlled by cell-type-specific gene regulation 1 . Here, we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence. In parallel, we performed spatial transcriptomic analysis on a subset of the samples to illustrate spatial organization and intercellular communication. This atlas enables us to catalog cell type-, age-, and area-specific gene regulatory networks underlying neural differentiation. Moreover, combining single-cell profiling, progenitor purification, and lineage-tracing experiments, we have untangled the complex lineage relationships among progenitor subtypes during the transition from neurogenesis to gliogenesis in the human neocortex. We identified a tripotential intermediate progenitor subtype, termed Tri-IPC, responsible for the local production of GABAergic neurons, oligodendrocyte precursor cells, and astrocytes. Remarkably, most glioblastoma cells resemble Tri-IPCs at the transcriptomic level, suggesting that cancer cells hijack developmental processes to enhance growth and heterogeneity. Furthermore, by integrating our atlas data with large-scale GWAS data, we created a disease-risk map highlighting enriched ASD risk in second-trimester intratelencephalic projection neurons. Our study sheds light on the gene regulatory landscape and cellular dynamics of the developing human neocortex.

3.
bioRxiv ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39131314

RESUMEN

The nuclear genome is spatially organized into a three-dimensional (3D) architecture by physical association of large chromosomal domains with subnuclear compartments including the nuclear lamina at the radial periphery and nuclear speckles within the nucleoplasm1-5. However, how spatial genome architecture regulates human brain development has been overlooked owing to technical limitations. Here, we generate high-resolution maps of genomic interactions with the lamina and speckles in cells of the neurogenic lineage isolated from midgestational human cortex, uncovering an intimate association between subnuclear genome compartmentalization, chromatin state and transcription. During cortical neurogenesis, spatial genome organization is extensively remodeled, relocating hundreds of neuronal genes from the lamina to speckles including key neurodevelopmental genes bivalent for H3K27me3 and H3K4me3. At the lamina, bivalent genes have exceptionally low expression, and relocation to speckles enhances resolution of bivalent chromatin to H3K4me3 and increases transcription >7-fold. We further demonstrate that proximity to the nuclear periphery - not the presence of H3K27me3 - is the dominant factor in maintaining the lowly expressed, poised state of bivalent genes embedded in the lamina. In addition to uncovering a critical role of subnuclear genome compartmentalization in neurogenic transcriptional regulation, our results establish a new paradigm in which knowing the spatial location of a gene is necessary to understanding its epigenomic regulation.

4.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713624

RESUMEN

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Corteza Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Animales , Neurogénesis/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratones , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Neuroglía/metabolismo , Neuroglía/citología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/citología , Linaje de la Célula , Humanos
5.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38733989

RESUMEN

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Asunto(s)
Cerebelo , Neuronas , Retina , Animales , Femenino , Masculino , Ratones , Cerebelo/metabolismo , Cerebelo/irrigación sanguínea , Cerebelo/citología , Canales Iónicos/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Retina/citología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Vasos Retinianos/metabolismo
6.
Nature ; 626(8001): 1056-1065, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122823

RESUMEN

The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.


Asunto(s)
Movimiento Celular , Neuronas , Lóbulo Temporal , Animales , Preescolar , Humanos , Lactante , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Eminencia Ganglionar/citología , Interneuronas/citología , Interneuronas/fisiología , Macaca mulatta , Neuronas/citología , Neuronas/fisiología , Análisis de Expresión Génica de una Sola Célula , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo
7.
Sci Adv ; 9(45): eadf6251, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939194

RESUMEN

The development and diversity of neuronal subtypes in the human hypothalamus has been insufficiently characterized. To address this, we integrated transcriptomic data from 241,096 cells (126,840 newly generated) in the prenatal and adult human hypothalamus to reveal a temporal trajectory from proliferative stem cell populations to mature hypothalamic cell types. Iterative clustering of the adult neurons identified 108 robust transcriptionally distinct neuronal subtypes representing 10 hypothalamic nuclei. Pseudotime trajectories provided insights into the genes driving formation of these nuclei. Comparisons to single-cell transcriptomic data from the mouse hypothalamus suggested extensive conservation of neuronal subtypes despite certain differences in species-enriched gene expression. The uniqueness of hypothalamic neuronal lineages was examined developmentally by comparing excitatory lineages present in cortex and inhibitory lineages in ganglionic eminence, revealing both distinct and shared drivers of neuronal maturation across the human forebrain. These results provide a comprehensive transcriptomic view of human hypothalamus development through gestation and adulthood at cellular resolution.


Asunto(s)
Hipotálamo , Neuronas , Ratones , Animales , Humanos , Hipotálamo/metabolismo , Neuronas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Genómica
8.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790331

RESUMEN

Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.

9.
Cell Stem Cell ; 30(10): 1331-1350.e11, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802038

RESUMEN

Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons. Single-dose intrahippocampal delivery of the interneurons in a mouse model of chronic MTLE resulted in consistent mesiotemporal seizure suppression, with most animals becoming seizure-free and surviving longer. The grafted interneurons dispersed locally, functionally integrated, persisted long term, and significantly reduced dentate granule cell dispersion, a pathological hallmark of MTLE. These disease-modifying effects were dose-dependent, with a broad therapeutic range. No adverse effects were observed. These findings support an ongoing phase 1/2 clinical trial (NCT05135091) for drug-resistant MTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Ratones , Animales , Humanos , Hipocampo/patología , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/cirugía , Convulsiones/patología , Convulsiones/cirugía , Interneuronas/fisiología , Encéfalo/patología
10.
Science ; 382(6667): eadf0834, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824647

RESUMEN

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.


Asunto(s)
Encefalopatías , Corteza Cerebral , Neuronas , Femenino , Humanos , Recién Nacido , Embarazo , Encefalopatías/genética , Corteza Cerebral/crecimiento & desarrollo , Redes Reguladoras de Genes , Interneuronas/metabolismo , Neuronas/metabolismo , Análisis de la Célula Individual , Masculino , Factores de Riesgo
11.
Cell Stem Cell ; 30(10): 1382-1391.e5, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673072

RESUMEN

Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.


Asunto(s)
Células Ependimogliales , Neurogénesis , Humanos , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Corteza Cerebral , Interneuronas/fisiología
12.
Nature ; 622(7981): 112-119, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704727

RESUMEN

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Asunto(s)
Proteómica , Sinapsis , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Ratones , Adulto Joven , Cognición/fisiología , Espinas Dendríticas , Edad Gestacional , Macaca , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Especificidad de la Especie , Sinapsis/metabolismo , Sinapsis/fisiología
13.
Cell Rep ; 42(9): 113038, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37624696

RESUMEN

Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.


Asunto(s)
Glaucoma , Enfermedades del Nervio Óptico , Humanos , Células Ganglionares de la Retina/metabolismo , Osteopontina , Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/metabolismo
14.
PLoS Biol ; 21(2): e3002032, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854254

RESUMEN

Radial glial cells, the stem cells of the cerebral cortex, extend a long basal fiber that ends in basal endfeet. A new study in PLOS Biology found that non-muscle myosins control basal endfoot integrity to regulate interneuron organization.


Asunto(s)
Corteza Cerebral , Células Ependimogliales , Interneuronas , Células Madre , Miosinas
15.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602862

RESUMEN

Mutations in the human progranulin (GRN) gene are a leading cause of frontotemporal lobar degeneration (FTLD). While previous studies implicate aberrant microglial activation as a disease-driving factor in neurodegeneration in the thalamocortical circuit in Grn-/- mice, the exact mechanism for neurodegeneration in FTLD-GRN remains unclear. By performing comparative single-cell transcriptomics in the thalamus and frontal cortex of Grn-/- mice and patients with FTLD-GRN, we have uncovered a highly conserved astroglial pathology characterized by upregulation of gap junction protein GJA1, water channel AQP4, and lipid-binding protein APOE, and downregulation of glutamate transporter SLC1A2 that promoted profound synaptic degeneration across the two species. This astroglial toxicity could be recapitulated in mouse astrocyte-neuron cocultures and by transplanting induced pluripotent stem cell-derived astrocytes to cortical organoids, where progranulin-deficient astrocytes promoted synaptic degeneration, neuronal stress, and TDP-43 proteinopathy. Together, these results reveal a previously unappreciated astroglial pathology as a potential key mechanism in neurodegeneration in FTLD-GRN.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Animales , Ratones , Progranulinas/genética , Demencia Frontotemporal/genética , Astrocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología
16.
Neuron ; 111(6): 857-873.e8, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640767

RESUMEN

Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.


Asunto(s)
Encéfalo , Elementos de Facilitación Genéticos , Pan troglodytes , Animales , Humanos , Cromatina , Aprendizaje Automático , Pan troglodytes/metabolismo , Factores de Transcripción/genética , Encéfalo/crecimiento & desarrollo
17.
Pain ; 164(1): 43-58, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35442931

RESUMEN

ABSTRACT: Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the BMP type I receptor ACVR1 (ACVR1 R206H ), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although patients with FOP can harbor pathological lesions in the peripheral and central nervous system, their etiology and clinical impact are unclear. Quantitative sensory testing of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.


Asunto(s)
Miositis Osificante , Neuralgia , Osificación Heterotópica , Humanos , Mutación con Ganancia de Función , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Miositis Osificante/genética , Miositis Osificante/metabolismo , Miositis Osificante/patología , Células Receptoras Sensoriales/metabolismo , Neuralgia/genética , Mutación/genética , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo
18.
Nature ; 609(7929): 907-910, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36171373

RESUMEN

Self-organizing three-dimensional cellular models derived from human pluripotent stem cells or primary tissue have great potential to provide insights into how the human nervous system develops, what makes it unique and how disorders of the nervous system arise, progress and could be treated. Here, to facilitate progress and improve communication with the scientific community and the public, we clarify and provide a basic framework for the nomenclature of human multicellular models of nervous system development and disease, including organoids, assembloids and transplants.


Asunto(s)
Consenso , Sistema Nervioso , Organoides , Terminología como Asunto , Humanos , Modelos Biológicos , Sistema Nervioso/citología , Sistema Nervioso/patología , Organoides/citología , Organoides/patología , Células Madre Pluripotentes/citología
19.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179668

RESUMEN

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Pericitos
20.
Nat Rev Neurosci ; 23(12): 711-724, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36180551

RESUMEN

Apical-basal progenitor cell polarity establishes key features of the radial and laminar architecture of the developing human cortex. The unique diversity of cortical stem cell populations and an expansion of progenitor population size in the human cortex have been mirrored by an increase in the complexity of cellular processes that regulate stem cell morphology and behaviour, including their polarity. The study of human cells in primary tissue samples and human stem cell-derived model systems (such as cortical organoids) has provided insight into these processes, revealing that protein complexes regulate progenitor polarity by controlling cell membrane adherence within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity is established and maintained are key for understanding the features of human brain development and have implications for neurological dysfunction.


Asunto(s)
Polaridad Celular , Corteza Cerebral , Humanos , Células Madre/fisiología , Organoides , Membrana Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA