Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2203883119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914168

RESUMEN

L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.


Asunto(s)
Canales de Calcio Tipo L , Hipocampo , Plasticidad Neuronal , Edición de ARN , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Hipocampo/metabolismo , Mamíferos/metabolismo , Ratones , Plasticidad Neuronal/genética , Neuronas/metabolismo , Células Piramidales/metabolismo
2.
J Alzheimers Dis ; 86(4): 1611-1616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35253770

RESUMEN

Alzheimer's disease (AD) is characterized by memory and cognitive deficits that in part are related to a diminished ability to activity-dependent synaptic plasticity. In AD, an attenuated long-term potentiation has been correlated with a deficit of synaptic plasticity-relevant proteins and protein turnover. The ubiquitin-proteasome system (UPS) critically regulates the protein turnover and contributes to dynamic changes of the protein milieu within synapses. In AD, UPS aberration has been implicated in inadequate proteostasis and synaptic malfunction. However, here we show that the inhibition of proteasome-mediated protein degradation by MG132 or lactacystin restored an impaired activity-dependent synaptic plasticity in an AD-like mouse model. In this whole-cell voltage-clamp study, we provided evidence that an amelioration of long-term plasticity by modulating UPS activity in pyramidal neurons.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo/metabolismo , Humanos , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Piramidales/metabolismo , Ubiquitina/metabolismo
3.
FASEB J ; 34(7): 9466-9479, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32459037

RESUMEN

Reduced retrograde memory performance at the cognitive level and aggregation/deposition of amyloid beta (Aß) in the brain at the cellular level are some of the hallmarks of Alzheimer's Disease (AD). A molecular system that participates in the removal of proteins with an altered conformation is the Ubiquitin-Proteasome System (UPS). Impairments of the UPS in wild-type (WT) mice lead to defective clearance of Aß and prevent long-term plasticity of synaptic transmission. Here we show data whereby in contrast to WT mice, the inhibition of proteasome-mediated protein degradation in an animal model of AD by MG132 or lactacystin restores impaired activity-dependent synaptic plasticity and its associative interaction, synaptic tagging and capture (STC) in vitro, as well as associative long-term memory in vivo. This augmentation of synaptic plasticity and memory is mediated by the mTOR pathway and protein synthesis. Our data offer novel insights into the rebalancing of proteins relevant for synaptic plasticity which are regulated by UPS in AD-like animal models. In addition, the data provide evidence that proteasome inhibitors might be effective in reinstating synaptic plasticity and memory performance in AD, and therefore offer a new potential therapeutic option for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Modelos Animales de Enfermedad , Leupeptinas/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Memoria a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(12): 5737-5746, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30819889

RESUMEN

In spike-timing-dependent plasticity (STDP), the direction and degree of synaptic modification are determined by the coherence of pre- and postsynaptic activities within a neuron. However, in the adult rat hippocampus, it remains unclear whether STDP-like mechanisms in a neuronal population induce synaptic potentiation of a long duration. Thus, we asked whether the magnitude and maintenance of synaptic plasticity in a population of CA1 neurons differ as a function of the temporal order and interval between pre- and postsynaptic activities. Modulation of the relative timing of Schaffer collateral fibers (presynaptic component) and CA1 axons (postsynaptic component) stimulations resulted in an asymmetric population STDP (pSTDP). The resulting potentiation in response to 20 pairings at 1 Hz was largest in magnitude and most persistent (4 h) when presynaptic activity coincided with or preceded postsynaptic activity. Interestingly, when postsynaptic activation preceded presynaptic stimulation by 20 ms, an immediate increase in field excitatory postsynaptic potentials was observed, but it eventually transformed into a synaptic depression. Furthermore, pSTDP engaged in selective forms of late-associative activity: It facilitated the maintenance of tetanization-induced early long-term potentiation (LTP) in neighboring synapses but not early long-term depression, reflecting possible mechanistic differences with classical tetanization-induced LTP. The data demonstrate that a pairing of pre- and postsynaptic activities in a neuronal population can greatly reduce the required number of synaptic plasticity-evoking events and induce a potentiation of a degree and duration similar to that with repeated tetanization. Thus, pSTDP determines synaptic efficacy in the hippocampal CA3-CA1 circuit and could bias the CA1 neuronal population toward potentiation in future events.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Masculino , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Sinapsis/fisiología , Lóbulo Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA