Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
2.
Nat Commun ; 15(1): 1067, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316791

RESUMEN

Eosinophils are involved in tissue homeostasis. Herein, we unveiled eosinophils as important regulators of bone homeostasis. Eosinophils are localized in proximity to bone-resorbing osteoclasts in the bone marrow. The absence of eosinophils in ΔdblGATA mice results in lower bone mass under steady-state conditions and amplified bone loss upon sex hormone deprivation and inflammatory arthritis. Conversely, increased numbers of eosinophils in IL-5 transgenic mice enhance bone mass under steady-state conditions and protect from hormone- and inflammation- mediated bone loss. Eosinophils strongly inhibit the differentiation and demineralization activity of osteoclasts and lead to profound changes in the transcriptional profile of osteoclasts. This osteoclast-suppressive effect of eosinophils is based on the release of eosinophil peroxidase causing impaired reactive oxygen species and mitogen-activated protein kinase induction in osteoclast precursors. In humans, the number and the activity of eosinophils correlates with bone mass in healthy participants and rheumatoid arthritis patients. Taken together, experimental and human data indicate a regulatory function of eosinophils on bone.


Asunto(s)
Resorción Ósea , Peroxidasa del Eosinófilo , Osteoclastos , Animales , Humanos , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , Peroxidasa del Eosinófilo/metabolismo , Eosinófilos , Homeostasis , Ratones Transgénicos , Osteoclastos/metabolismo
3.
Sci Rep ; 10(1): 21020, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273570

RESUMEN

Osteoclasts are specialised bone resorbing cells that control both physiological and pathological bone turnover. Functional changes in the differentiation and activity of osteoclasts are accompanied by active metabolic reprogramming. However, the biological significance and the in vivo relevance of these events has remained unclear. Here we show that bone resorption of differentiated osteoclasts heavily relies on increased aerobic glycolysis and glycolysis-derived lactate production. While pharmacological inhibition of glycolysis did not affect osteoclast differentiation or viability, it efficiently blocked bone resorption in vitro and in vivo and consequently ameliorated ovariectomy-induced bone loss. Our experiments thus highlight the therapeutic potential of interfering with osteoclast-intrinsic metabolic pathways as possible strategy for the treatment of diseases characterized by accelerated bone loss.


Asunto(s)
Antimetabolitos/farmacología , Resorción Ósea/metabolismo , Desoxiglucosa/farmacología , Glucólisis , Osteoclastos/metabolismo , Osteoporosis/metabolismo , Animales , Antimetabolitos/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Células Cultivadas , Desoxiglucosa/uso terapéutico , Femenino , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Oxígeno/metabolismo
4.
Sci Rep ; 10(1): 8428, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439961

RESUMEN

Bone turnover, which is determined by osteoclast-mediated bone resorption and osteoblast-mediated bone formation, represents a highly energy consuming process. The metabolic requirements of osteoblast differentiation and mineralization, both essential for regular bone formation, however, remain incompletely understood. Here we identify the nuclear receptor peroxisome proliferator-activated receptor (PPAR) δ as key regulator of osteoblast metabolism. Induction of PPARδ was essential for the metabolic adaption and increased rate in mitochondrial respiration necessary for the differentiation and mineralization of osteoblasts. Osteoblast-specific deletion of PPARδ in mice, in turn, resulted in an altered energy homeostasis of osteoblasts, impaired mineralization and reduced bone mass. These data show that PPARδ acts as key regulator of osteoblast metabolism and highlight the relevance of cellular metabolic rewiring during osteoblast-mediated bone formation and bone-turnover.


Asunto(s)
Remodelación Ósea/fisiología , Osteoblastos/metabolismo , Osteogénesis/fisiología , PPAR delta/genética , PPAR delta/metabolismo , Animales , Densidad Ósea/fisiología , Diferenciación Celular , Células Cultivadas , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Osteoblastos/citología , Osteoclastos/metabolismo , Fosforilación Oxidativa
5.
J Bone Miner Res ; 33(11): 2035-2047, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29949664

RESUMEN

NR4A1 (Nur77 or NGFI-B), an orphan member of the nuclear receptor superfamily, has been identified as a key regulator of the differentiation and function of myeloid, lymphoid, and mesenchymal cells. The detailed role of NR4A1 in bone biology is incompletely understood. Here, we report a role for NR4A1 as novel factor controlling the migration and recruitment of osteoclast precursors during bone remodeling. Myeloid-specific but not osteoblast-specific deletion of NR4A1 resulted in osteopenia due to an increase in the number of bone-lining osteoclasts. Although NR4A1-deficient osteoclast precursors displayed a regular differentiation into mature osteoclasts, they showed a hyper-motile phenotype that was largely dependent on increased osteopontin expression, suggesting that expression of NR4A1 negatively controlled osteopontin-mediated recruitment of osteoclast precursors to the trabecular bone. Pharmacological activation of NR4A1, in turn, inhibited osteopontin expression and osteopontin-dependent migration of osteoclast precursors resulted in reduced abundance of bone-resorbing osteoclasts in vivo as well as in an ameliorated bone loss after ovariectomy in mice. This study identifies NR4A1 as a crucial player in the regulation of osteoclast biology and bone remodeling and highlights this nuclear receptor as a promising target for therapeutic intervention during the treatment of osteoporosis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Asunto(s)
Remodelación Ósea , Movimiento Celular , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Animales , Resorción Ósea/patología , Hueso Esponjoso/metabolismo , Recuento de Células , Diferenciación Celular , Fusión Celular , Eliminación de Gen , Homeostasis , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Osteoblastos/metabolismo , Osteopontina/metabolismo , Ovariectomía , Proteínas Represoras/metabolismo
6.
Nat Commun ; 9(1): 55, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302038

RESUMEN

Microbial metabolites are known to modulate immune responses of the host. The main metabolites derived from microbial fermentation of dietary fibers in the intestine, short-chain fatty acids (SCFA), affect local and systemic immune functions. Here we show that SCFA are regulators of osteoclast metabolism and bone mass in vivo. Treatment of mice with SCFA as well as feeding with a high-fiber diet significantly increases bone mass and prevents postmenopausal and inflammation-induced bone loss. The protective effects of SCFA on bone mass are associated with inhibition of osteoclast differentiation and bone resorption in vitro and in vivo, while bone formation is not affected. Mechanistically, propionate (C3) and butyrate (C4) induce metabolic reprogramming of osteoclasts resulting in enhanced glycolysis at the expense of oxidative phosphorylation, thereby downregulating essential osteoclast genes such as TRAF6 and NFATc1. In summary, these data identify SCFA as potent regulators of osteoclast metabolism and bone homeostasis.


Asunto(s)
Resorción Ósea/metabolismo , Huesos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Osteoclastos/metabolismo , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/prevención & control , Huesos/efectos de los fármacos , Butiratos/metabolismo , Butiratos/farmacología , Fibras de la Dieta/administración & dosificación , Ácidos Grasos Volátiles/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Propionatos/metabolismo , Propionatos/farmacología , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA