Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730234

RESUMEN

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Asunto(s)
Aptámeros de Nucleótidos , Dominio Catalítico , Hirudinas , Trombina , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacología , Anticoagulantes/farmacología , Anticoagulantes/química , Factor Xa/metabolismo , Factor Xa/química , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacología , Animales , Sitios de Unión , Coagulación Sanguínea/efectos de los fármacos
2.
Blood ; 143(12): 1167-1180, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38142429

RESUMEN

ABSTRACT: Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.


Asunto(s)
Síndrome Antifosfolípido , COVID-19 , Virosis , Humanos , Animales , Ratones , Anticuerpos Antifosfolípidos , Tromboplastina/metabolismo , Ratones Endogámicos MRL lpr , Síndrome Antifosfolípido/complicaciones , Fosfolípidos , Anticoagulantes , COVID-19/complicaciones , Virosis/complicaciones
3.
J Thromb Haemost ; 21(9): 2640-2641, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479539
4.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36930803

RESUMEN

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Asunto(s)
Plaquetas , Proteínas de Transferencia de Fosfolípidos , Animales , Ratones , Tiempo de Sangría , Plaquetas/metabolismo , Eliminación de Gen , Homeostasis/genética , Ratones Endogámicos C57BL , Neoplasias/genética , Fosfatidilinositoles/biosíntesis , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genética , Trombosis/genética
5.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35114109

RESUMEN

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Asunto(s)
Anticoagulantes/farmacología , Aptámeros de Nucleótidos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor V/antagonistas & inhibidores , Factor Va/antagonistas & inhibidores , Secuencia de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Emparejamiento Base , Sitios de Unión , COVID-19/sangre , Membrana Celular/química , Membrana Celular/metabolismo , Factor V/química , Factor V/genética , Factor V/metabolismo , Factor Va/química , Factor Va/genética , Factor Va/metabolismo , Heparina de Bajo-Peso-Molecular/química , Heparina de Bajo-Peso-Molecular/metabolismo , Humanos , Sueros Inmunes/química , Sueros Inmunes/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Protaminas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Técnica SELEX de Producción de Aptámeros , Especificidad por Sustrato , Tratamiento Farmacológico de COVID-19
6.
Res Pract Thromb Haemost ; 5(5): e12532, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34296056

RESUMEN

This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) was hosted virtually from Philadelphia July 17-21, 2021. The conference, now held annually, highlighted cutting-edge advances in basic, population and clinical sciences of relevance to the Society. Despite being held virtually, the 2021 congress was of the same scope and quality as an annual meeting held in person. An added feature of the program is that talks streamed at the designated times will then be available on-line for asynchronous viewing. The program included 77 State of the Art (SOA) talks, thematically grouped in 28 sessions, given by internationally recognized leaders in the field. The SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. The topics, across the main scientific themes of the congress, include Arterial Thromboembolism, Coagulation and Natural Anticoagulants, COVID-19 and Coagulation, Diagnostics and Omics, Fibrinogen, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostasis in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Angiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the congress.

7.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 809-819, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076594

RESUMEN

Coagulation factor VIIa (FVIIa) consists of a γ-carboxyglutamic acid (GLA) domain, two epidermal growth factor-like (EGF) domains and a protease domain. FVIIa binds three Mg2+ ions and four Ca2+ ions in the GLA domain, one Ca2+ ion in the EGF1 domain and one Ca2+ ion in the protease domain. Further, FVIIa contains an Na+ site in the protease domain. Since Na+ and water share the same number of electrons, Na+ sites in proteins are difficult to distinguish from waters in X-ray structures. Here, to verify the Na+ site in FVIIa, the structure of the FVIIa-soluble tissue factor (TF) complex was solved at 1.8 Šresolution containing Mg2+, Ca2+ and Rb+ ions. In this structure, Rb+ replaced two Ca2+ sites in the GLA domain and occupied three non-metal sites in the protease domain. However, Rb+ was not detected at the expected Na+ site. In kinetic experiments, Na+ increased the amidolytic activity of FVIIa towards the synthetic substrate S-2288 (H-D-Ile-Pro-Arg-p-nitroanilide) by ∼20-fold; however, in the presence of Ca2+, Na+ had a negligible effect. Ca2+ increased the hydrolytic activity of FVIIa towards S-2288 by ∼60-fold in the absence of Na+ and by ∼82-fold in the presence of Na+. In molecular-dynamics simulations, Na+ stabilized the two Na+-binding loops (the 184-loop and 220-loop) and the TF-binding region spanning residues 163-180. Ca2+ stabilized the Ca2+-binding loop (the 70-loop) and Na+-binding loops but not the TF-binding region. Na+ and Ca2+ together stabilized both the Na+-binding and Ca2+-binding loops and the TF-binding region. Previously, Rb+ has been used to define the Na+ site in thrombin; however, it was unsuccessful in detecting the Na+ site in FVIIa. A conceivable explanation for this observation is provided.


Asunto(s)
Calcio/metabolismo , Factor VIIa , Magnesio/metabolismo , Rubidio/metabolismo , Sitios de Unión , Factor VIIa/química , Factor VIIa/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
8.
J Thromb Haemost ; 19(6): 1385, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34047010
9.
J Biol Chem ; 295(45): 15198-15207, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32859749

RESUMEN

Factor X activation by the intrinsic Xase complex, composed of factor IXa bound to factor VIIIa on membranes, is essential for the amplified blood coagulation response. The biological significance of this step is evident from bleeding arising from deficiencies in factors VIIIa or IXa in hemophilia. Here, we assess the mechanism(s) that enforce the distinctive specificity of intrinsic Xase for its biological substrate. Active-site function of IXa was assessed with a tripeptidyl substrate (PF-3688). The reversible S1 site binder, 4-aminobenzamidine (pAB), acted as a classical competitive inhibitor of PF-3688 cleavage by Xase. In contrast, pAB acted as a noncompetitive inhibitor of factor X activation. This disconnect between peptidyl substrate and protein substrate cleavage indicates a major role for interactions between factor X and extended sites on Xase in determining substrate affinity. Accordingly, an uncleavable factor X variant, not predicted to engage the active site of IXa within Xase, acted as a classical competitive inhibitor of factor X activation. Fluorescence studies confirmed the binding of factor X to Xase assembled with IXa with a covalently blocked active site. Our findings suggest that the recognition of factor X by the intrinsic Xase complex occurs through a multistep "dock-and-lock" pathway in which the initial interaction between factor X and intrinsic Xase occurs at exosites distant from the active site, followed by active-site docking and bond cleavage.


Asunto(s)
Factor IXa/metabolismo , Factor VIIIa/metabolismo , Factor X/metabolismo , Sitios de Unión , Humanos , Cinética , Proteínas Recombinantes/metabolismo
10.
Blood ; 135(23): 2085-2093, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187355

RESUMEN

Thromboembolism complicates disorders caused by immunoglobulin G (IgG)-containing immune complexes (ICs), but the underlying mechanisms are incompletely understood. Prior evidence indicates that induction of tissue factor (TF) on monocytes, a pivotal step in the initiation, localization, and propagation of coagulation by ICs, is mediated through Fcγ receptor IIa (FcγRIIa); however, the involvement of other receptors has not been investigated in detail. The neonatal Fc receptor (FcRn) that mediates IgG and albumin recycling also participates in cellular responses to IgG-containing ICs. Here we asked whether FcRn is also involved in the induction of TF-dependent factor Xa (FXa) activity by IgG-containing ICs by THP-1 monocytic cells and human monocytes. Induction of FXa activity by ICs containing IgG antibodies to platelet factor 4 (PF4) involved in heparin-induced thrombocytopenia (HIT), ß-2-glycoprotein-1 implicated in antiphospholipid syndrome, or red blood cells coated with anti-(α)-Rh(D) antibodies that mediate hemolysis in vivo was inhibited by a humanized monoclonal antibody (mAb) that blocks IgG binding to human FcRn. IgG-containing ICs that bind to FcγR and FcRn induced FXa activity, whereas IgG-containing ICs with an Fc engineered to be unable to engage FcRn did not. Infusion of an α-FcRn mAb prevented fibrin deposition after microvascular injury in a murine model of HIT in which human FcγRIIa was expressed as a transgene. These data implicate FcRn in TF-dependent FXa activity induced by soluble and cell-associated IgG-containing ICs. Antibodies to FcRn, now in clinical trials in warm autoimmune hemolytic anemia to lower IgG antibodies and IgG containing ICs may also reduce the risk of venous thromboembolism.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Heparina/toxicidad , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/metabolismo , Receptores Fc/metabolismo , Trombocitopenia/inmunología , Tromboplastina/metabolismo , Animales , Anticoagulantes/toxicidad , Complejo Antígeno-Anticuerpo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Factor Plaquetario 4/genética , Factor Plaquetario 4/metabolismo , Receptores Fc/genética , Receptores Fc/inmunología , Trombocitopenia/inducido químicamente , Trombocitopenia/metabolismo , Trombocitopenia/patología
11.
J Biol Chem ; 294(7): 2422-2435, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30578302

RESUMEN

The proteolytic conversion of factor V to factor Va is central for amplified flux through the blood coagulation cascade. Heterodimeric factor Va is produced by cleavage at three sites in the middle of factor V by thrombin, yielding an N terminus-derived heavy chain and a C terminus-derived light chain. Here, we show that light chain formation resulting from the C-terminal cleavage is the rate-limiting step in the formation of fully cleaved Va. This rate-limiting step also corresponded to and was sufficient for the ability of cleaved factor V to bind Xa and assemble into the prothrombinase complex. Meizothrombin, the proteinase intermediate in thrombin formation, cleaves factor V more slowly than does thrombin, resulting in a pronounced defect in the formation of the light chain. A ∼100-fold reduced rate of meizothrombin-mediated light chain formation by meizothrombin corresponded to equally slow production of active cofactor and an impaired ability to amplify flux through the coagulation cascade initiated in plasma. We show that this defect arises from the occlusion of anion-binding exosite 2 in the catalytic domain by the covalently retained propiece in meizothrombin. Our findings provide structural insights into the prominent role played by exosite 2 in the rate-limiting step of factor V activation. They also bear on how factor V is converted into a cofactor capable of assembling into prothrombinase.


Asunto(s)
Precursores Enzimáticos/química , Factor Va/química , Proteolisis , Trombina/química , Precursores Enzimáticos/metabolismo , Factor Va/metabolismo , Factor Xa/química , Factor Xa/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , Trombina/metabolismo
12.
Res Pract Thromb Haemost ; 2(3): 407-428, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30046746

RESUMEN

This 9th Symposium on Hemostasis is an international scientific meeting held biannually in Chapel Hill, North Carolina. The meeting is in large measure the result of the close friendship between the late Dr. Harold R. Roberts of UNC Chapel Hill and Dr. Ulla Hedner of Novo Nordisk. When Novo Nordisk was developing the hemophilia therapy that would become NovoSeven, they sponsored a series of meetings to understand the basic biology and clinical applications of factor VIIa. The first meeting in Chapel Hill was held April 4-6, 2002 with Dr. Roberts as the organizer. Over the years, the conference emphasis has expanded from discussions of factor VIIa and tissue factor to additional topics in hemostasis and thrombosis. This year's meeting includes presentations by internationally renowned speakers that discuss the state-of-the-art on an array of important topics, including von Willebrand factor, engineering advances, coagulation and disease, tissue factor biology, therapeutic advances, and basic clotting factor biology. Included in this review article are illustrated abstracts provided by our speakers, which highlight the main conclusions of each invited talk. This will be the first meeting without Dr. Roberts in attendance, yet his commitment to excellent science and his focus on turning science to patient care are pervasively reflected in the presentations by our speakers.

13.
Nat Biotechnol ; 36(7): 606-613, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29863725

RESUMEN

Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.


Asunto(s)
Anticoagulantes/administración & dosificación , Inhibidores del Factor Xa/administración & dosificación , Factor Xa/química , Hemorragia Posoperatoria/tratamiento farmacológico , Anticoagulantes/química , Aptámeros de Nucleótidos/administración & dosificación , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Puente Cardiopulmonar/efectos adversos , Cristalografía por Rayos X , Combinación de Medicamentos , Factor Xa/genética , Inhibidores del Factor Xa/química , Heparina/efectos adversos , Humanos , Hemorragia Posoperatoria/genética , Hemorragia Posoperatoria/patología , Conformación Proteica/efectos de los fármacos
14.
Nat Commun ; 8(1): 1216, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29084966

RESUMEN

Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Pulmonares/secundario , Proteínas de Transferencia de Fosfolípidos/metabolismo , Trombosis/metabolismo , Animales , Anticoagulantes/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/patología , Fibrina/metabolismo , Eliminación de Gen , Hemostasis/efectos de los fármacos , Hiperplasia , Inmunidad Mucosa/efectos de los fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Integrasas/metabolismo , Tejido Linfoide/patología , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trombina/metabolismo , Trombosis/patología
15.
Blood ; 130(14): 1661-1670, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28729433

RESUMEN

Safe and effective antithrombotic therapy requires understanding of mechanisms that contribute to pathological thrombosis but have a lesser impact on hemostasis. We found that the extrinsic tissue factor (TF) coagulation initiation complex can selectively activate the antihemophilic cofactor, FVIII, triggering the hemostatic intrinsic coagulation pathway independently of thrombin feedback loops. In a mouse model with a relatively mild thrombogenic lesion, TF-dependent FVIII activation sets the threshold for thrombus formation through contact phase-generated FIXa. In vitro, FXa stably associated with TF-FVIIa activates FVIII, but not FV. Moreover, nascent FXa product of TF-FVIIa can transiently escape the slow kinetics of Kunitz-type inhibition by TF pathway inhibitor and preferentially activates FVIII over FV. Thus, TF synergistically primes FIXa-dependent thrombin generation independently of cofactor activation by thrombin. Accordingly, FVIIa mutants deficient in direct TF-dependent thrombin generation, but preserving FVIIIa generation by nascent FXa, can support intrinsic pathway coagulation. In ex vivo flowing blood, a TF-FVIIa mutant complex with impaired free FXa generation but activating both FVIII and FIX supports efficient FVIII-dependent thrombus formation. Thus, a previously unrecognized TF-initiated pathway directly yielding FVIIIa-FIXa intrinsic tenase complex may be prohemostatic before further coagulation amplification by thrombin-dependent feedback loops enhances the risk of thrombosis.


Asunto(s)
Coagulación Sanguínea , Factor VIII/metabolismo , Factor VIIa/metabolismo , Factor Xa/metabolismo , Tromboplastina/metabolismo , Factor VIIIa/metabolismo , Humanos , Trombina/metabolismo
16.
Nat Med ; 22(8): 924-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27455511

RESUMEN

Direct inhibitors of coagulation factor Xa (FXa) or thrombin are promising oral anticoagulants that are becoming widely adopted. The ability to reverse their anticoagulant effects is important when serious bleeding occurs or urgent medical procedures are needed. Here, using experimental mouse models of hemostasis, we show that a variant coagulation factor, FXa(I16L), rapidly restores hemostasis in the presence of the anticoagulant effects of these inhibitors. The ability of FXa(I16L) to reverse the anticoagulant effects of FXa inhibitor depends, at least in part, on the ability of the active site inhibitor to hinder antithrombin-dependent FXa inactivation, paradoxically allowing uninhibited FXa to persist in plasma. Because of its inherent catalytic activity, FXa(I16L) is more potent (by >50-fold) in the hemostasis models tested than a noncatalytic antidote that is currently in clinical development. FXa(I16L) also reduces the anticoagulant-associated bleeding in vivo that is induced by the thrombin inhibitor dabigatran. FXa(I16L) may be able to fill an important unmet clinical need for a rapid, pro-hemostatic agent to reverse the effects of several new anticoagulants.


Asunto(s)
Antídotos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Inhibidores del Factor Xa/farmacología , Factor Xa/farmacología , Hemostasis/efectos de los fármacos , Rivaroxabán/farmacología , Animales , Factor Xa/química , Humanos , Técnicas In Vitro , Ratones , Tromboelastografía
17.
J Biol Chem ; 291(21): 11114-23, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27013660

RESUMEN

Thrombin is produced from the C-terminal half of prothrombin following its proteolytic activation. The N-terminal half, released as the propiece Fragment 12 (F12), is composed of an N-terminal γ-carboxyglutamate domain (Gla) followed by two kringles (K1 and K2). The propiece plays essential roles in regulating prothrombin activation and proteinase function. The latter results from the ability of F12 to reversibly bind to the (pro)catalytic domain through K2 with high affinity and highly favorable thermodynamic constants when it is a zymogen in comparison to proteinase. Such discrimination is lost for K2 binding after proteolytic removal of the N-terminal Gla-K1 region of F12. The Ca(2+)-stabilized structure of the Gla domain is not required for F12 to bind the zymogen form more favorably. Enhanced binding to zymogen versus proteinase correlates with the ability of the propiece to enforce zymogen-like character in the proteinase. This is evident in variants of meizothrombin, an intermediate of prothrombin activation that contains the propiece covalently attached. This phenomenon is also independent of the Gla domain. Thus, the presence of K1 in covalent linkage with K2 in the propiece governs the ability of K2 to bind the (pro)catalytic domain in favor of zymogen, thereby enforcing zymogen-like character in the proteinase.


Asunto(s)
Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Protrombina/química , Protrombina/metabolismo , Dominio Catalítico , Activación Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Kringles , Modelos Moleculares , Unión Proteica , Termodinámica
18.
Blood ; 126(8): 923-4, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26294711

RESUMEN

In this issue of Blood, back-to-back (dos-à-dos) papers by Chiu et al and Yee et al present complementary findings of structural investigations into the interaction between factor VIII (FVIII) and von Willebrand factor (VWF). The binding of FVIII to VWF contributes in a major way to the regulation of hemostasis.


Asunto(s)
Factor VIII/química , Factor VIII/metabolismo , Modelos Moleculares , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Humanos
19.
Int Sch Res Notices ; 2015: 402358, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27347517

RESUMEN

The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.

20.
Blood ; 124(11): 1705-14, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24869936

RESUMEN

The membrane-dependent interaction of factor Xa (FXa) with factor Va (FVa) forms prothrombinase and drives thrombin formation essential for hemostasis. Activated platelets are considered to provide the primary biological surface to support prothrombinase function. However, the question of how other cell types may cooperate within the biological milieu to affect hemostatic plug formation remains unaddressed. We used confocal fluorescence microscopy to image the distribution of site-specific fluorescent derivatives of FVa and FXa after laser injury in the mouse cremaster arteriole. These proteins bound to the injury site extend beyond the platelet mass to the surrounding endothelium. Although bound FVa and FXa may have been present on the platelet core at the nidus of the injury, bound proteins were not evident on platelets adherent even a small distance from the injury site. Manipulations to drastically reduce adherent platelets yielded a surprisingly modest decrease in bound FXa and FVa with little impact on fibrin formation. Thus, platelets adherent to the site of vascular injury do not play the presumed preeminent role in supporting prothrombinase assembly and thrombin formation. Rather, the damaged/activated endothelium and possibly other blood cells play an unexpectedly important role in providing a procoagulant membrane surface in vivo.


Asunto(s)
Endotelio Vascular/metabolismo , Factor Va/metabolismo , Factor Xa/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Animales , Arteriolas/metabolismo , Arteriolas/patología , Plaquetas/metabolismo , Plaquetas/patología , Endotelio Vascular/patología , Ratones , Ratones Endogámicos BALB C , Adhesividad Plaquetaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA