Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 19(8): 1172-1188, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39029458

RESUMEN

The intestinal epithelium ensures uptake of vital nutrients and acts as a barrier between luminal contents and the underlying immune system. In inflammatory bowel diseases, such as ulcerative colitis (UC), this barrier is compromised, and patients experience debilitating symptoms. Here, we perform single-cell RNA profiling of epithelial cells and outline patterns of cell fate decisions in healthy individuals and UC patients. We demonstrate that patterns of hierarchical behavior are altered in UC patients and identify unique cellular states associated with Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation in ulcerated and non-ulcerated areas of the colonic epithelium. These transcriptional changes could be recapitulated in human colonic organoids, wherein cytokine-mediated activation of JAK/STAT led to the emergence of cell populations with augmented regenerative properties. Altogether, our findings indicate that intricate relationships between epithelial and cytokine signaling regulate cell fate during epithelial tissue regeneration in humans and have important implications for the understanding of UC biology.


Asunto(s)
Colitis Ulcerosa , Mucosa Intestinal , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Humanos , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colitis Ulcerosa/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Organoides/metabolismo , Análisis de la Célula Individual , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Diferenciación Celular
2.
Nat Cell Biol ; 23(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972733

RESUMEN

Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Homeostasis/fisiología , Animales , Epitelio/metabolismo , Mucosa Esofágica/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA