Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Chron Obstruct Pulmon Dis ; 16: 3575-3591, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002229

RESUMEN

BACKGROUND: Endothelial dysfunction and destruction of the pulmonary microcirculation are important pathogenic factors in chronic obstructive pulmonary disease (COPD). In COPD, bronchial obstruction is associated with endothelial dysfunction. Thus, new pharmacological treatment options aimed at restoring the pulmonary endothelium represent a clinical need in COPD therapy. Notch1 has been shown to protect cells against apoptosis, inflammation, and oxidative stress caused by cigarette smoke extract (CSE). Therefore, drug which effect on Notch1 may be a potential therapeutic target for COPD in the future. METHODS: In this study, we assessed the potential of spiperone to mediate regeneration of pulmonary endothelium in model of pulmonary emphysema induced by a CSE and lipopolysaccharide (LPS) in female C57BL/6 mice. RESULTS: Spiperone increased the number of capillaries as well as the expression of the CD31 in the alveolar tissue compared to the controls. Moreover, application of spiperone prevented alveolar wall destruction (DI), and reduced the area of emphysema. Lastly, we demonstrated that spiperone positively influenced mobilization and migration of endothelial progenitor cells (EPC, CD45-CD34+CD31+), CD309+-endothelial cells, and angiogenesis precursors (CD45-CD117+CD309+) into the lung. Spiperone administration significantly reduced the number Notch1 positive CD309+-endothelial cells and Notch1+ EPCs. CONCLUSION: Overall, our results suggest that spiperone mediates endothelial regeneration in an animal model of COPD. Thus, it could represent a novel therapeutic approach for treatment of emphysema associated with COPD.


Asunto(s)
Fumar Cigarrillos , Células Progenitoras Endoteliales , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Fumar Cigarrillos/efectos adversos , Células Progenitoras Endoteliales/metabolismo , Endotelio/metabolismo , Endotelio/patología , Femenino , Humanos , Lipopolisacáridos/farmacología , Pulmón , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/tratamiento farmacológico , Regeneración , Espiperona/metabolismo , Espiperona/farmacología , Espiperona/uso terapéutico
2.
Front Cell Dev Biol ; 8: 562358, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344442

RESUMEN

Metabolic syndrome can lead to several challenging complications including degeneration of the pancreas and hypogonadism. Recently, we have shown that Bisamide Derivative of Dicarboxylic Acid (BDDA) can contribute to pancreatic restoration in mice with metabolic disorders via its positive effects on lipid and glucose metabolism, and by increasing the numbers of pancreatic stem cells. In the present study, we hypothesized that BDDA might also be effective in restoring hypogonadism caused by metabolic syndrome. Experiments were performed on male C57BL/6 mice with hypogonadism, where metabolic disorders have been introduced by a combination of streptozotocin treatment and high fat diet. Using a combination of histological and biochemical methods along with a flow cytometric analysis of stem and progenitor cell markers, we evaluated the biological effects of BDDA on testicular tissue, germ cells, spermatogonial stem cells in vitro and in vivo, as well as on fertility. We demonstrate that in mice with metabolic disorders, BDDA has positive effects on spermatogenesis and restores fertility. We also show that BDDA exerts its therapeutic effects by reducing inflammation and by modulating spermatogonial stem cells. Thus, our results suggest that BDDA could represent a promising lead compound for the development of novel therapeutics able to stimulate regeneration of the testicular tissue and to restore fertility in hypogonadism resulting from complications of metabolic syndrome.

3.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33171668

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by interstitial fibrosis and progressive respiratory failure. Pirfenidone and nintedanib slow down but do not stop the progression of IPF. Thus, new compounds with high antifibrotic activity and simultaneously regenerative activity are an unmet clinical need. Recently, we showed that Treamid can help restoring the pancreas and testicular tissue in mice with metabolic disorders. We hypothesized that Treamid may be effective in antifibrotic therapy and regeneration of damaged lung tissue in pulmonary fibrosis. In this study, experiments were performed on male C57BL/6 mice with bleomycin-induced pulmonary fibrosis. We applied histological and immunohistochemical methods, ELISA, and assessed the expression of markers of endothelial and epithelial cells in primary cultures of CD31+ and CD326+ lung cells. Finally, we evaluated esterase activity and apoptosis of lung cells in vitro. Our data indicate that Treamid exhibits antifibrotic activity in mice with pulmonary fibrosis and has a positive effect on capillaries of the lungs. Treamid also increases the number of endothelial progenitor cells in the lungs of animals with pulmonary fibrosis. Lastly, Treamid increases esterase activity and decreases apoptosis of CD31+ lung cells in vitro. Based on these findings, we suggest that Treamid may represent a promising compound for the development of new antifibrotic agents, which are capable of stimulating regeneration of lung endothelium in IPF patients.


Asunto(s)
Ácidos Dicarboxílicos/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Bleomicina/toxicidad , Capilares/efectos de los fármacos , Capilares/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/fisiopatología , Indoles/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Piridonas/farmacología , Regeneración/efectos de los fármacos , Regeneración/fisiología
4.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028560

RESUMEN

In clinical practice, the metabolic syndrome can lead to multiple complications, including diabetes. It remains unclear which component of the metabolic syndrome (obesity, inflammation, hyperglycemia, or insulin resistance) has the strongest inhibitory effect on stem cells involved in beta cell regeneration. This makes it challenging to develop effective treatment options for complications such as diabetes. In our study, experiments were performed on male C57BL/6 mice where metabolic disorders have been introduced experimentally by a combination of streptozotocin-treatment and a high-fat diet. We evaluated the biological effects of Bisamide Derivative of Dicarboxylic Acid (BDDA) and its impact on pancreatic stem cells in vivo. To assess the impact of BDDA, we applied a combination of histological and biochemical methods along with a cytometric analysis of stem cell and progenitor cell markers. We show that in mice with metabolic disorders, BDDA has a positive effect on lipid and glucose metabolism. The pancreatic restoration was associated with a decrease of the inhibitory effects of inflammation and obesity factors on pancreatic stem cells. Our data shows that BDDA increases the number of pancreatic stem cells. Thus, BDDA could be used as a new compound for treating complication of the metabolic syndrome such as diabetes.


Asunto(s)
Amidas/química , Citocinas/sangre , Ácidos Dicarboxílicos/química , Hipoglucemiantes/farmacología , Lípidos/sangre , Enfermedades Metabólicas/tratamiento farmacológico , Animales , Hipoglucemiantes/química , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL
5.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671663

RESUMEN

In clinical practice, the metabolic syndrome (MetS) is often associated with chronic obstructive pulmonary disease (COPD). Although gender differences in MetS are well documented, little is known about sex-specific differences in the pathogenesis of COPD, especially when combined with MetS. Consequently, it is not clear whether the same treatment regime has comparable efficacy in men and women diagnosed with MetS and COPD. In the present study, using sodium glutamate, lipopolysaccharide, and cigarette smoke extract, we simulated lipid metabolism disorders, obesity, hyperglycemia, and pulmonary emphysema (comorbidity) in male and female C57BL/6 mice. We assessed the gender-specific impact of lipid metabolism disorders and pulmonary emphysema on angiogenic precursor cells (endothelial progenitor cells (EPC), pericytes, vascular smooth muscle cells, cells of the lumen of the nascent vessel), as well as the biological effects of pegylated glucagon-like peptide 1 (pegGLP-1) in this experimental paradigm. Simulation of MetS/COPD comorbidity caused an accumulation of EPC (CD45-CD31+CD34+), pericytes, and vascular smooth muscle cells in the lungs of female mice. In contrast, the number of cells involved in the angiogenesis decreased in the lungs of male animals. PegGLP-1 had a positive effect on lipids and area under the curve (AUC), obesity, and prevented the development of pulmonary emphysema. The severity of these effects was stronger in males than in females. Furthermore, PegGLP-1 stimulated regeneration of pulmonary endothelium. At the same time, PegGLP-1 administration caused a mobilization of EPC (CD45-CD31+CD34+) into the bloodstream in females and migration of precursors of angiogenesis and vascular smooth muscle cells to the lungs in male animals. Gender differences in stimulatory action of pegGLP-1 on CD31+ endothelial lung cells in vitro were not observed. Based on these findings, we postulated that the cellular mechanism of in vivo regeneration of lung epithelium was at least partly gender-specific. Thus, we concluded that a pegGLP-1-based treatment regime for metabolic disorder and COPD should be further developed primarily for male patients.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Péptido 1 Similar al Glucagón/administración & dosificación , Síndrome Metabólico/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfisema Pulmonar/tratamiento farmacológico , Animales , Fumar Cigarrillos/efectos adversos , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/citología , Femenino , Péptido 1 Similar al Glucagón/farmacología , Humanos , Lipopolisacáridos/efectos adversos , Masculino , Síndrome Metabólico/inducido químicamente , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfisema Pulmonar/inducido químicamente , Caracteres Sexuales , Glutamato de Sodio/efectos adversos , Resultado del Tratamiento
6.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836679

RESUMEN

In clinical practice, there are patients with a combination of metabolic syndrome (MS) and chronic obstructive pulmonary disease (COPD). The pathological mechanisms linking MS and COPD are largely unknown. It remains unclear whether the effect of MS (possible obesity) has a major impact on the progression of COPD. This complicates the development of effective approaches for the treatment of patients with a diagnosis of MS and COPD. Experiments were performed on female C57BL/6 mice. Introduction of monosodium glutamate and extract of cigarette smoke was modeled to simulate the combined pathology of lipid disorders and emphysema. Biological effects of glucagon-like peptide 1 (GLP-1) and GLP-1 on endothelial progenitor cells (EPC) in vitro and in vivo were evaluated. Histological, immunohistochemical methods, biochemical methods, cytometric analysis of markers identifying EPC were used in the study. The CD31⁺ endothelial cells in vitro evaluation was produced by Flow Cytometry and Image Processing of each well with a Cytation™ 3. GLP-1 reduces the area of emphysema and increases the number of CD31⁺ endothelial cells in the lungs of mice in conditions of dyslipidemia and damage to alveolar tissue of cigarette smoke extract. The regenerative effects of GLP-1 are caused by a decrease in inflammation, a positive effect on lipid metabolism and glucose metabolism. EPC are proposed as pathogenetic and diagnostic markers of endothelial disorders in combination of MS with COPD. Based on GLP-1, it is proposed to create a drug to stimulate the regeneration of endothelium damaged in MS and COPD.


Asunto(s)
Péptido 1 Similar al Glucagón/genética , Síndrome Metabólico/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/genética , Animales , Fumar Cigarrillos/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Progenitoras Endoteliales/metabolismo , Citometría de Flujo , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Pulmón/efectos de los fármacos , Pulmón/patología , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/tratamiento farmacológico , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/patología , Glutamato de Sodio/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA