Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Metab ; 6(5): 837-846, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570627

RESUMEN

Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.


Asunto(s)
Proteínas de Drosophila , Neuronas , Sodio , Animales , Sodio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Periodo Posprandial , Drosophila melanogaster , Sistema Nervioso Entérico/metabolismo , Gusto/fisiología , Mutación , Drosophila , Canales de Sodio , Receptores Ionotrópicos de Glutamato
2.
Nat Commun ; 14(1): 690, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755033

RESUMEN

Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Filogenia , Saccharomyces/genética , Biodiversidad , Fenotipo
3.
Nature ; 602(7898): 632-638, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140404

RESUMEN

Animals must set behavioural priority in a context-dependent manner and switch from one behaviour to another at the appropriate moment1-3. Here we probe the molecular and neuronal mechanisms that orchestrate the transition from feeding to courtship in Drosophila melanogaster. We find that feeding is prioritized over courtship in starved males, and the consumption of protein-rich food rapidly reverses this order within a few minutes. At the molecular level, a gut-derived, nutrient-specific neuropeptide hormone-Diuretic hormone 31 (Dh31)-propels a switch from feeding to courtship. We further address the underlying kinetics with calcium imaging experiments. Amino acids from food acutely activate Dh31+ enteroendocrine cells in the gut, increasing Dh31 levels in the circulation. In addition, three-photon functional imaging of intact flies shows that optogenetic stimulation of Dh31+ enteroendocrine cells rapidly excites a subset of brain neurons that express Dh31 receptor (Dh31R). Gut-derived Dh31 excites the brain neurons through the circulatory system within a few minutes, in line with the speed of the feeding-courtship behavioural switch. At the circuit level, there are two distinct populations of Dh31R+ neurons in the brain, with one population inhibiting feeding through allatostatin-C and the other promoting courtship through corazonin. Together, our findings illustrate a mechanism by which the consumption of protein-rich food triggers the release of a gut hormone, which in turn prioritizes courtship over feeding through two parallel pathways.


Asunto(s)
Proteínas de Drosophila , Hormonas de Insectos , Animales , Cortejo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Hormonas de Insectos/metabolismo , Masculino , Nutrientes , Conducta Sexual Animal/fisiología
4.
Mol Biol Evol ; 35(8): 1968-1981, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29788479

RESUMEN

Repeated evolutionary events imply underlying genetic constraints that can make evolutionary mechanisms predictable. Morphological traits are thought to evolve frequently through cis-regulatory changes because these mechanisms bypass constraints in pleiotropic genes that are reused during development. In contrast, the constraints acting on metabolic traits during evolution are less well studied. Here we show how a metabolic bottleneck gene has repeatedly adopted similar cis-regulatory solutions during evolution, likely due to its pleiotropic role integrating flux from multiple metabolic pathways. Specifically, the genes encoding phosphoglucomutase activity (PGM1/PGM2), which connect GALactose catabolism to glycolysis, have gained and lost direct regulation by the transcription factor Gal4 several times during yeast evolution. Through targeted mutations of predicted Gal4-binding sites in yeast genomes, we show this galactose-mediated regulation of PGM1/2 supports vigorous growth on galactose in multiple yeast species, including Saccharomyces uvarum and Lachancea kluyveri. Furthermore, the addition of galactose-inducible PGM1 alone is sufficient to improve the growth on galactose of multiple species that lack this regulation, including Saccharomyces cerevisiae. The strong association between regulation of PGM1/2 by Gal4 even enables remarkably accurate predictions of galactose growth phenotypes between closely related species. This repeated mode of evolution suggests that this specific cis-regulatory connection is a common way that diverse yeasts can govern flux through the pathway, likely due to the constraints imposed by this pleiotropic bottleneck gene. Since metabolic pathways are highly interconnected, we argue that cis-regulatory evolution might be widespread at pleiotropic genes that control metabolic bottlenecks and intersections.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Galactosa/metabolismo , Fosfoglucomutasa/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Factores de Transcripción/metabolismo , Fosfoglucomutasa/metabolismo , Saccharomycetales/metabolismo
5.
Elife ; 52016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27690225

RESUMEN

The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Duplicados , Genes Fúngicos , Redes y Vías Metabólicas/genética , Saccharomyces/genética , Saccharomyces/metabolismo , Fructosa/metabolismo , Galactosa/metabolismo , Saccharomyces/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA