Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
iScience ; 27(10): 110944, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39398236

RESUMEN

Thermogenic brown adipocytes (BAs) catabolize lipids to generate heat, representing powerful agents against the growing global obesity epidemic. We and others reported recently that LETMD1 is a BA-specific protein essential for mitochondrial structure and function, but the mechanisms of action remain unclear. We performed sequential digestion to demonstrate that LETMD1 is a trans-inner mitochondrial membrane protein. We then generated UCP1Cre-driven BA-specific Letmd1 knockout (Letmd1 UKO ) mice to show that Letmd1 UKO leads to protein aggregation, reactive oxidative stress, hyperpolarization, and mitophagy in BAs. We further employed TurboID proximity labeling to identify LETMD1-interacting proteins. Many candidate proteins are associated with mitochondrial ribosomes, protein import machinery, and electron transport chain complexes (ETC-I and ETC-IV). Using quantitative proteomics, we confirmed the elevated aggregations of ETC and mitochondrial ribosomal proteins, impairing mitochondrial protein synthesis in the Letmd1 UKO BAs. Therefore, LETMD1 may function to maintain mitochondrial proteostasis through regulating import of nuclear-encoded proteins and local protein translation in brown fat mitochondria.

2.
FASEB J ; 38(19): e70071, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39382025

RESUMEN

The skeletal muscle satellite cells (SCs) mediate regeneration of myofibers upon injury. As they switch from maintenance (quiescence) to regeneration, their relative reliance on glucose and fatty acid metabolism alters. To explore the contribution of mitochondrial fatty acid oxidation (FAO) pathway to SCs and myogenesis, we examined the role of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO. CPT1A is highly expressed in quiescent SCs (QSCs) compared with activated and proliferating SCs, and its expression level decreases during myogenic differentiation. Myod1Cre-driven overexpression (OE) of Cpt1a in embryonic myoblasts (Cpt1aMTG) reduces muscle weight, grip strength, and contractile force without affecting treadmill endurance of adult mice. Adult Cpt1aMTG mice have reduced number of SC, impairing muscle regeneration and promoting lipid infiltration. Similarly, Pax7CreER-driven, tamoxifen-inducible Cpt1a-OE in QSCs of adult muscles (Cpt1aPTG) leads to depletion of SCs and compromises muscle regeneration. The reduced proliferation of Cpt1a-OE SCs is associated with elevated level of acyl-carnitine, and acyl-carnitine treatment impedes proliferation of wildtype SCs. These findings indicate that aberrant level of CPT1A elevates acyl-carnitine to impair the maintenance, proliferation and regenerative function of SCs.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Desarrollo de Músculos , Músculo Esquelético , Células Satélite del Músculo Esquelético , Animales , Masculino , Ratones , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Diferenciación Celular , Proliferación Celular , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo
3.
Dev Cell ; 59(10): 1231-1232, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772342

RESUMEN

Brown adipocytes are found in several fat depots, however, the origins and contributions of different lineages of adipogenic progenitor cells (APCs) to these depots are unclear. In this issue of Developmental Cell, Shi et al. show that platelet-derived growth factor receptor ß (PDGFRß)-lineage and T-box transcription factor 18 (TBX18)-lineage APCs differentially contribute to brown adipogenesis across these depots.


Asunto(s)
Adipogénesis , Receptores Notch , Células Madre , Adipogénesis/fisiología , Animales , Receptores Notch/metabolismo , Células Madre/metabolismo , Células Madre/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Humanos , Adipocitos Marrones/metabolismo , Adipocitos Marrones/citología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Diferenciación Celular , Linaje de la Célula , Ratones , Transducción de Señal
4.
Curr Top Dev Biol ; 158: 221-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670707

RESUMEN

The skeletal muscle is well known for its remarkable ability to regenerate after injuries. The regeneration is a complex and dynamic process that involves muscle stem cells (also called muscle satellite cells, MuSCs), fibro-adipogenic progenitors (FAPs), immune cells, and other muscle-resident cell populations. The MuSCs are the myogenic cell populaiton that contribute nuclei directly to the regenerated myofibers, while the other cell types collaboratively establish a microenvironment that facilitates myogenesis of MuSCs. The myogenic process includes activation, proliferation and differentiationof MuSCs, and subsequent fusion their descendent mononuclear myocytes into multinuclear myotubes. While the contributions of FAPs and immune cells to this microenvironment have been well studied, the influence of MuSCs on other cell types remains poorly understood. This review explores recent evidence supporting the potential role of MuSCs as immunomodulators during muscle regeneration, either through cytokine production or ligand-receptor interactions.


Asunto(s)
Músculo Esquelético , Regeneración , Regeneración/fisiología , Animales , Humanos , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Desarrollo de Músculos , Células Madre/citología , Células Madre/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Diferenciación Celular , Factores Inmunológicos/farmacología , Factores Inmunológicos/metabolismo , Inmunomodulación
5.
PNAS Nexus ; 3(2): pgae023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38312223

RESUMEN

The ability to monitor the response of metabolic enzymes to drug exposure in individuals is highly appealing and critical to personalized medicine. Although pharmacogenomics assesses genotypic differences, it does not report changes in metabolic enzyme activities due to environmental factors such as drug interactions. Here, we report a quantitative proteomics strategy to monitor drug metabolic pathways by profiling metabolic enzymes in circulating extracellular vesicles (EVs) upon drug exposure. Mass spectrometry (MS)-based measurement revealed that changes in metabolic enzyme abundance in EVs paralleled those in hepatic cells isolated from liver tissue. Coupling with multiplexed isotopic labeling, we temporally quantified 34 proteins involved in drug absorption, distribution, metabolism, and excretion (ADME) pathways. Out of 44 known ADME proteins in plasma EVs, previously annotated mouse cytochrome P450 3A11 (Cyp3a11), homolog to human CYP3A4, and uridine 5'-diphospho (UDP) glucuronosyltransferase 2A3 (Ugt2a3), increased upon daily rifampicin dosage. Dasatinib, a tyrosine kinase inhibitor to treat leukemia, also elevated Cyp3a11 levels in plasma EVs, but to a lesser extent. Altogether, this study demonstrates that measuring drug enzymes in circulating EVs as an effective surrogate is highly feasible and may transform today's drug discovery and development for personalized medicine.

6.
Sci Rep ; 13(1): 18943, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919323

RESUMEN

Skeletal muscle fibers regulate surrounding endothelial cells (EC) via secretion of numerous angiogenic factors, including extracellular vesicles (SkM-EV). Muscle fibers are broadly classified as oxidative (OXI) or glycolytic (GLY) depending on their metabolic characteristics. OXI fibers secrete more pro-angiogenic factors and have greater capillary densities than GLY fibers. OXI muscle secretes more EV than GLY, however it is unknown whether muscle metabolic characteristics regulate EV contents and signaling potential. EVs were isolated from primarily oxidative or glycolytic muscle tissue from mice. MicroRNA (miR) contents were determined and endothelial cells were treated with OXI- and GLY-EV to investigate angiogenic signaling potential. There were considerable differences in miR contents between OXI- and GLY-EV and pathway analysis identified that OXI-EV miR were predicted to positively regulate multiple endothelial-specific pathways, compared to GLY-EV. OXI-EV improved in vitro angiogenesis, which may have been mediated through nitric oxide synthase (NOS) related pathways, as treatment of endothelial cells with a non-selective NOS inhibitor abolished the angiogenic benefits of OXI-EV. This is the first report to show widespread differences in miR contents between SkM-EV isolated from metabolically different muscle tissue and the first to demonstrate that oxidative muscle tissue secretes EV with greater angiogenic signaling potential than glycolytic muscle tissue.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , Células Endoteliales/metabolismo , Músculo Esquelético/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Estrés Oxidativo
7.
Nat Commun ; 14(1): 6344, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816711

RESUMEN

Cold stimulation dynamically remodels mitochondria in brown adipose tissue (BAT) to facilitate non-shivering thermogenesis in mammals, but what regulates mitochondrial plasticity is poorly understood. Comparing mitochondrial proteomes in response to cold revealed FAM210A as a cold-inducible mitochondrial inner membrane protein. An adipocyte-specific constitutive knockout of Fam210a (Fam210aAKO) disrupts mitochondrial cristae structure and diminishes the thermogenic activity of BAT, rendering the Fam210aAKO mice vulnerable to lethal hypothermia under acute cold exposure. Induced knockout of Fam210a in adult adipocytes (Fam210aiAKO) does not affect steady-state mitochondrial structure under thermoneutrality, but impairs cold-induced mitochondrial remodeling, leading to progressive loss of cristae and reduction of mitochondrial density. Proteomics reveals an association between FAM210A and OPA1, whose cleavage governs cristae dynamics and mitochondrial remodeling. Mechanistically, FAM210A interacts with mitochondrial protease YME1L and modulates its activity toward OMA1 and OPA1 cleavage. These data establish FAM210A as a key regulator of mitochondrial cristae remodeling in BAT and shed light on the mechanism underlying mitochondrial plasticity in response to cold.


Asunto(s)
Adipocitos Marrones , Hipotermia , Proteínas Mitocondriales , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Frío , Hipotermia/metabolismo , Metaloendopeptidasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Termogénesis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
8.
Cell Rep ; 42(11): 113329, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37883229

RESUMEN

Development is regulated by various factors, including protein methylation status. While PRMT5 is well known for its roles in oncogenesis by mediating symmetric di-methylation of arginine, its role in normal development remains elusive. Using Myod1Cre to drive Prmt5 knockout in embryonic myoblasts (Prmt5MKO), we dissected the role of PRMT5 in myogenesis. The Prmt5MKO mice are born normally but exhibit progressive muscle atrophy and premature death. Prmt5MKO inhibits proliferation and promotes premature differentiation of embryonic myoblasts, reducing the number and regenerative function of satellite cells in postnatal mice. Mechanistically, PRMT5 methylates and destabilizes FoxO1. Prmt5MKO increases the total FoxO1 level and promotes its cytoplasmic accumulation, leading to activation of autophagy and depletion of lipid droplets (LDs). Systemic inhibition of autophagy in Prmt5MKO mice restores LDs in myoblasts and moderately improves muscle regeneration. Together, PRMT5 is essential for muscle development and regeneration at least partially through mediating FoxO1 methylation and LD turnover.


Asunto(s)
Mioblastos , Proteína-Arginina N-Metiltransferasas , Animales , Ratones , Autofagia , Diferenciación Celular , Metilación , Mioblastos/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
9.
Elife ; 122023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724949

RESUMEN

Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas the Mfn2-/- cells maintain a circular shape. Increased cytosolic Ca2+ resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+ activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.


Asunto(s)
Actinas , Fibroblastos , Animales , Humanos , Ratones , Actinas/metabolismo , Fibroblastos/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo
10.
Skelet Muscle ; 13(1): 15, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705115

RESUMEN

Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.


Asunto(s)
Músculo Esquelético , Células Madre , Animales , Ratones , Diferenciación Celular , Desarrollo de Músculos , Regeneración , Factores de Transcripción SOXC/genética
11.
bioRxiv ; 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37577696

RESUMEN

Mitochondria are not only essential for energy production in eukaryocytes but also a key regulator of intracellular signaling. Here, we report an unappreciated role of mitochondria in regulating cytosolic protein translation in skeletal muscle cells (myofibers). We show that the expression of mitochondrial protein FAM210A (Family With Sequence Similarity 210 Member A) is positively associated with muscle mass in mice and humans. Muscle-specific Myl1Cre-driven Fam210a knockout (Fam210aMKO) in mice reduces mitochondrial density and function, leading to progressive muscle atrophy and premature death. Metabolomic and biochemical analyses reveal that Fam210aMKO reverses the oxidative TCA cycle towards the reductive direction, resulting in acetyl-CoA accumulation and hyperacetylation of cytosolic proteins. Specifically, hyperacetylation of several ribosomal proteins leads to disassembly of ribosomes and translational defects. Transplantation of Fam210aMKO mitochondria into wildtype myoblasts is sufficient to elevate protein acetylation in recipient cells. These findings reveal a novel crosstalk between the mitochondrion and ribosome mediated by FAM210A.

12.
Oncogene ; 42(34): 2521-2535, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37433985

RESUMEN

Human dedifferentiated liposarcoma (DDLPS) is a rare but lethal cancer with no driver mutations being identified, hampering the development of targeted therapies. We and others recently reported that constitutive activation of Notch signaling through overexpression of the Notch1 intracellular domain (NICDOE) in murine adipocytes leads to tumors resembling human DDLPS. However, the mechanisms underlying the oncogenic functions of Notch activation in DDLPS remains unclear. Here, we show that Notch signaling is activated in a subset of human DDLPS and correlates with poor prognosis and expression of MDM2, a defining marker of DDLPS. Metabolic analyses reveal that murine NICDOE DDLPS cells exhibit markedly reduced mitochondrial respiration and increased glycolysis, mimicking the Warburg effect. This metabolic switch is associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (Ppargc1a, encoding PGC-1α protein), a master regulator of mitochondrial biogenesis. Genetic ablation of the NICDOE cassette rescues the expression of PGC-1α and mitochondrial respiration. Similarly, overexpression of PGC-1α is sufficient to rescue mitochondria biogenesis, inhibit the growth and promote adipogenic differentiation of DDLPS cells. Together, these data demonstrate that Notch activation inhibits PGC-1α to suppress mitochondrial biogenesis and drive a metabolic switch in DDLPS.


Asunto(s)
Liposarcoma , Factores de Transcripción , Humanos , Animales , Ratones , Factores de Transcripción/genética , Biogénesis de Organelos , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal/genética , Liposarcoma/genética , Liposarcoma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 14(5): 2152-2167, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37439037

RESUMEN

BACKGROUND: Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis. METHODS: Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate heterogeneities and differentiation processes of individual cell types and differences between cattle breeds. Experiments were conducted to validate the function and specificity of identified key regulatory and marker genes. Integrated analysis with multiple published human and non-human primate datasets was performed to identify common mechanisms. RESULTS: A total of 32 708 cells and 21 clusters were identified, including fibro/adipogenic progenitor (FAP) and other resident and infiltrating cell types. We identified an endomysial adipogenic FAP subpopulation enriched for COL4A1 and CFD (log2FC = 3.19 and 1.92, respectively; P < 0.0001) and a perimysial fibrogenic FAP subpopulation enriched for COL1A1 and POSTN (log2FC = 1.83 and 0.87, respectively; P < 0.0001), both of which were likely derived from an unspecified subpopulation. Further analysis revealed more progressed adipogenic programming of Wagyu FAPs and more advanced fibrogenic programming of Brahman FAPs. Mechanistically, NAB2 drives CFD expression, which in turn promotes adipogenesis. CFD expression in FAPs of young cattle before the onset of intramuscular adipogenesis was predictive of IMF contents in adulthood (R2  = 0.885, P < 0.01). Similar adipogenic and fibrogenic FAPs were identified in humans and monkeys. In aged humans with metabolic syndrome and progressed Duchenne muscular dystrophy (DMD) patients, increased CFD expression was observed (P < 0.05 and P < 0.0001, respectively), which was positively correlated with adipogenic marker expression, including ADIPOQ (R2  = 0.303, P < 0.01; and R2  = 0.348, P < 0.01, respectively). The specificity of Postn/POSTN as a fibrogenic FAP marker was validated using a lineage-tracing mouse line. POSTN expression was elevated in Brahman FAPs (P < 0.0001) and DMD patients (P < 0.01) but not in aged humans. Strong interactions between vascular cells and FAPs were also identified. CONCLUSIONS: Our study demonstrates the feasibility of beef cattle as a model for studying IMF and IMC. We illustrate the FAP programming during intramuscular adipogenesis and fibrogenesis and reveal the reliability of CFD as a predictor and biomarker of IMF accumulation in cattle and humans.


Asunto(s)
Adipogénesis , Distrofia Muscular de Duchenne , Bovinos , Humanos , Animales , Ratones , Anciano , Adipogénesis/fisiología , Reproducibilidad de los Resultados , Músculo Esquelético/metabolismo , Diferenciación Celular
14.
EMBO Rep ; 24(8): e57306, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37334900

RESUMEN

Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well-known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5, we generated skeletal muscle-specific Prmt5 knockout (Prmt5MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element-Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate-limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle-specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Transferasas , Animales , Ratones , Arginina/metabolismo , Metabolismo de los Lípidos/genética , Músculo Esquelético/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transferasas/metabolismo
15.
Chem Sci ; 14(15): 4070-4082, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37063787

RESUMEN

The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 µm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. Specifically, we combine high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image registration and segmentation approaches are used to integrate the information obtained with both techniques. Our results indicate that the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated phospholipids, and oxidized phospholipids, were identified as molecular signatures of oxidative metabolism. In contrast, histidine-related compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in phospholipids was found in oxidative fibers whereas more saturated acyl chains in phospholipids were found in glycolytic fibers which suggests an effect of the membrane fluidity on the metabolic properties of skeletal myofibers.

16.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034612

RESUMEN

Transcription factors (TFs) play key roles in regulating the differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associated domains. Unexpectedly, Myod1 Cre -driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7 CreER or Rosa26 CreER driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remain to be elucidated.

17.
Methods Mol Biol ; 2640: 351-368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995607

RESUMEN

Lipid homeostasis is critical for maintaining normal cellular functions including membrane structural integrity, cell metabolism, and signal transduction. Adipose tissue and skeletal muscle are two major tissues involved in lipid metabolism. Adipose tissue can store excessive lipids in the form of triacylglyceride (TG), which can be hydrolyzed to release free fatty acids (FFAs) under insufficient nutrition states. In the highly energy-demanding skeletal muscle, lipids serve as oxidative substrates for energy production but can cause muscle dysfunction when overloaded. Lipids undergo fascinating cycles of biogenesis and degradation depending on physiological demands, while dysregulation of lipid metabolism has been increasingly recognized as a hallmark of diseases such as obesity and insulin resistance. Thus, it is important to understand the diversity and dynamics of lipid composition in adipose tissue and skeletal muscle. Here, we describe the use of multiple reaction monitoring profiling, based on lipid class and fatty acyl chain specific fragmentation, to explore various classes of lipids in skeletal muscle and adipose tissues. We provide a detailed method for exploratory analysis of acylcarnitine (AC), ceramide (Cer), cholesteryl ester (CE), diacylglyceride (DG), FFA, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), and TG. Characterization of lipid composition within adipose tissue and skeletal muscle under different physiological situations will provide biomarkers and therapeutic targets for obesity-related diseases.


Asunto(s)
Lipidómica , Obesidad , Humanos , Obesidad/metabolismo , Ésteres del Colesterol , Metabolismo de los Lípidos , Fosfatidilcolinas/metabolismo , Músculo Esquelético/metabolismo
18.
Exp Physiol ; 108(2): 240-252, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454193

RESUMEN

NEW FINDINGS: What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro-angiogenic signalling factors: does overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC-1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC-1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. ABSTRACT: Skeletal muscle capillarization is proportional to muscle fibre mitochondrial content and oxidative capacity. Skeletal muscle cells secrete many factors that regulate neighbouring capillary endothelial cells (ECs), including extracellular vesicles (SkM-EVs). Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) regulates mitochondrial biogenesis and the oxidative phenotype in skeletal muscle. Skeletal muscle PGC-1α also regulates secretion of multiple angiogenic factors, but it is unknown whether PGC-1α regulates SkM-EV release, contents and angiogenic signalling potential. PGC-1α was overexpressed via adenovirus in primary human myotubes. EVs were collected from PGC-1α-overexpressing myotubes (PGC-EVs) as well as from green fluorescent protein-overexpressing myotubes (GFP-EVs), and from untreated myotubes. EV release and select mRNA contents were measured from EVs. Additionally, ECs were treated with EVs to measure angiogenic potential of EVs in normal conditions and following an oxidative stress challenge. PGC-1α overexpression did not impact EV release but did elevate EV content of mRNAs for several antioxidant proteins (nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, glutathione peroxidase). PGC-EV treatment of cultured human umbilical vein endothelial cells (HUVECs) increased their proliferation (+36.6%), tube formation (length: +28.1%; number: +25.7%) and cellular viability (+52.9%), and reduced reactive oxygen species levels (-41%) compared to GFP-EVs. Additionally, PGC-EV treatment protected against tube formation impairments and induction of cellular senescence following acute oxidative stress. Overexpression of PGC-1α in human myotubes increases the angiogenic potential of SkM-EVs. These angiogenic benefits coincided with increased anti-oxidative capacity of recipient HUVECs. High PGC-1α expression in skeletal muscle may prompt the release of SkM-EVs that support vascular redox homeostasis and angiogenesis.


Asunto(s)
Vesículas Extracelulares , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Músculo Esquelético/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Vesículas Extracelulares/metabolismo
19.
Diabetologia ; 66(2): 390-405, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36378328

RESUMEN

AIMS/HYPOTHESIS: Acetyl coenzyme A acetyltransferase (ACAT), also known as acetoacetyl-CoA thiolase, catalyses the formation of acetoacetyl-CoA from acetyl-CoA and forms part of the isoprenoid biosynthesis pathway. Thus, ACAT plays a central role in cholesterol metabolism in a variety of cells. Here, we aimed to assess the effect of hepatic Acat2 overexpression on cholesterol metabolism and systemic energy metabolism. METHODS: We generated liver-targeted adeno-associated virus 9 (AAV9) to achieve hepatic Acat2 overexpression in mice. Mice were injected with AAV9 through the tail vein and subjected to morphological, physiological (body composition, indirect calorimetry, treadmill, GTT, blood biochemistry, cardiac ultrasonography and ECG), histochemical, gene expression and metabolomic analysis under normal diet or feeding with high-fat diet to investigate the role of ACAT2 in the liver. RESULTS: Hepatic Acat2 overexpression reduced body weight and total fat mass, elevated the metabolic rate, improved glucose tolerance and lowered the serum cholesterol level of mice. In addition, the overexpression of Acat2 inhibited fatty acid, glucose and ketone metabolic pathways but promoted cholesterol metabolism and changed the bile acid pool and composition of the liver. Hepatic Acat2 overexpression also decreased the size of white adipocytes and promoted lipid metabolism in white adipose tissue. Furthermore, hepatic Acat2 overexpression protected mice from high-fat-diet-induced weight gain and metabolic defects CONCLUSIONS/INTERPRETATION: Our study identifies an essential role for ACAT2 in cholesterol metabolism and systemic energy expenditure and provides key insights into the metabolic benefits of hepatic Acat2 overexpression. Thus, adenoviral Acat2 overexpression in the liver may be a potential therapeutic tool in the treatment of obesity and hypercholesterolaemia.


Asunto(s)
Colesterol , Metabolismo de los Lípidos , Ratones , Animales , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Obesidad/genética , Obesidad/metabolismo , Glucosa/metabolismo
20.
Research (Wash D C) ; 6: 0268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38434240

RESUMEN

Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and crucial for systemic metabolism. Under chronic cold exposures and high-fat diet challenges, BAT undergoes robust remodeling to adapt to physiological demands. However, whether and how BAT regenerates after acute injuries are poorly understood. Here, we established a novel BAT injury and regeneration model (BAT-IR) in mice and performed single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq to determine cellular and transcriptomic dynamics during BAT-IR. We further defined distinct fibro-adipogenic and myeloid progenitor populations contributing to BAT regeneration. Cell trajectory and gene expression analyses uncovered the involvement of MAPK, Wnt, and Hedgehog (Hh) signaling pathways in BAT regeneration. We confirmed the role of Hh signaling in BAT development through Myf5Cre-mediated conditional knockout (cKO) of the Sufu gene to activate Hh signaling in BAT and muscle progenitors. Our BAT-IR model therefore provides a paradigm to identify conserved cellular and molecular mechanisms underlying BAT development and remodeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA