Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Heliyon ; 10(9): e30581, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742053

RESUMEN

This study examines the predictive value of elevated N-terminal-pro brain natriuretic peptide (NT-pro BNP) levels for mortality among patients with end-stage renal disease (ESRD). Data from 768 ESRD patients, excluding those with cancer or lost follow-up, were analyzed using Kaplan-Meier curves and Cox proportional hazards models over three years. Results indicated that patients with very high NT-pro BNP levels had shorter average survival times and a significantly higher risk of mortality (hazard ratio 1.43). Advanced age, ICU admission, and comorbidities like cerebrovascular diseases and chronic obstructive pulmonary disease also contributed to increased mortality risks. Thus, elevated NT-pro BNP is an independent risk factor for mortality in ESRD patients.

2.
PLoS One ; 19(5): e0303962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776290

RESUMEN

In the field of financial risk management, the accuracy of portfolio Value-at-Risk (VaR) forecasts is of critical importance to both practitioners and academics. This study pioneers a comprehensive evaluation of a univariate model that leverages high-frequency intraday data to improve portfolio VaR forecasts, providing a novel contrast to both univariate and multivariate models based on daily data. Existing research has used such high-frequency-based univariate models for index portfolios, it has not adequately studied their robustness for portfolios with diverse risk profiles, particularly under changing market conditions, such as during crises. Our research fills this gap by proposing a refined univariate long-memory realized volatility model that incorporates realized variance and covariance metrics, eliminating the necessity for a parametric covariance matrix. This model captures the long-run dependencies inherent in the volatility process and provides a flexible alternative that can be paired with appropriate return innovation distributions for VaR estimation. Empirical analyses show that our methodology significantly outperforms traditional univariate and multivariate Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models in terms of forecasting accuracy while maintaining computational simplicity and ease of implementation. In particular, the inclusion of high-frequency data in univariate volatility models not only improves forecasting accuracy but also streamlines the complexity of portfolio risk assessment. This research extends the discourse between academic research and financial practice, highlighting the transformative impact of high-frequency data on risk management strategies within the financial sector.


Asunto(s)
Inversiones en Salud , Modelos Económicos , Inversiones en Salud/economía , Humanos , Predicción/métodos , Gestión de Riesgos/métodos , Administración Financiera/estadística & datos numéricos , Modelos Estadísticos
3.
J Colloid Interface Sci ; 669: 104-116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38705110

RESUMEN

Aqueous zinc ion batteries (AZIBs) face significant challenges stemming from Zn dendrite growth and water-contact attack, primarily due to the lack of a well-designed solid electrolyte interphase (SEI) to safeguard the Zn anode. Herein, we report a bio-mass derived polymer of chitin on Zn anode (Zn@chitin) as a novel and robust artificial SEI layer to boost the Zn anode rechargeability. The polymeric chitin SEI layer features both zincophilic and hydrophobic characteristics to target the suppressed dendritic Zn formation as well as the water-induced side reactions, thus harvesting a dendrite-free and corrosion-resistant Zn anode. More importantly, this polymeric interphase layer is strong and flexible accommodating the volume changes during repeated cycling. Based on these benefits, the Zn@chitin anode demonstrates prolonged cycling performance surpassing 1300 h under an ultra-large current density of 20 mA cm-2, and a long cycle life of 680 h with a record-high zinc utilization rate of 80 %. Besides, the assembled Zn@chitin/V2O5 full batteries reveal excellent capacity retention and rate performance under practical conditions, proving the reliability of our proposed strategy for industrial AZIBs. Our research offers valuable insights for constructing high-performance AZIBs, and simultaneously realizes the high-efficient use of cheap biomass from a "waste-to-wealth" concept.

4.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400309

RESUMEN

A lack of available information on heating, ventilation, and air-conditioning (HVAC) systems can affect the performance of data-driven fault-tolerant control (FTC) models. This study proposed an in situ selective incremental calibration (ISIC) strategy. Faults were introduced into the indoor air (Ttz1) thermostat and supply air temperature (Tsa) and chilled water supply air temperature (Tchws) sensors of a central air-conditioning system. The changes in the system performance after FTC were evaluated. Then, we considered the effects of the data quality, data volume, and variable number on the FTC results. For the Ttz1 thermostat and Tsa sensor, the system energy consumption was reduced by 2.98% and 3.72% with ISIC, respectively, and the predicted percentage dissatisfaction was reduced by 0.67% and 0.63%, respectively. Better FTC results were obtained using ISIC when the Ttz1 thermostat had low noise, a 7-day data volume, or sufficient variables and when the Tsa and Tchws sensors had low noise, a 14-day data volume, or limited variables.

6.
J Sep Sci ; 47(2): e2300624, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286726

RESUMEN

The comprehensive and efficient characterization of components in traditional Chinese medicine is crucial for elucidating its active constituents and uncovering its mechanism. Identifying the compounds of the Bushen Huoxue Prescription (BHP) is difficult because of its complex composition and the large difference in concentration among its compounds. In this study, a hydrophilic interaction liquid chromatography coupled with reversed-phase LC (HILIC × RPLC) offline 2D-LC tandem high-resolution mass spectrometry method was established to analyze the total compounds of the BHP. Database screening and molecular networking were performed to identify the compounds. In contrast to conventional 1D chromatography, 2D chromatography increased peak capacity, enriched trace ingredients, and prevented the masking of high-abundance compounds. A total of 165 compounds were identified, and 14 potential compounds needed to be further identified. This study provided an effective method for comprehensively analyzing the complex system of traditional Chinese medicine compounds.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas , Cromatografía Liquida , Tecnología , Cromatografía de Fase Inversa
7.
Animals (Basel) ; 14(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275801

RESUMEN

Pig farmers in Taiwan tend to overdose copper (Cu) and zinc (Zn) in animal feeds to ensure pig health. The application of Cu- or Zn-rich livestock compost to fields can result in high Cu/Zn residues in surface soil and violate limitations for zinc and copper in land applications. This study aims to extract Cu and Zn from sludge using organic acid or H2O2/organic acids. The livestock bio-sludge was dried and treated with different concentrations of acetic acid (1N, 2N, and 4N). The acid-extracted sludge was then treated with or without adding H2O2 during different periods (4, 24, and 48 h) to investigate the efficiency of acid extraction of Cu and Zn. The supernatant of the acid-extracted product was separated from the residues through centrifugation. Experimental results showed that the treatment set of dried bio-sludge with 2% H2O2 significantly promoted the removal efficiency of Cu and Zn from the bio-sludge (p < 0.01). The best removal efficiency of Cu and Zn from the bio-sludge was 40% and 70%, respectively, using 4N acetic acid in the 48 h group. The study shows a green method for extracting Cu and Zn from livestock sludge, enhancing the sustainability of intensive livestock farming.

8.
Small ; 20(1): e2305119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653595

RESUMEN

Rampant dendrite growth, electrode passivation and severe corrosion originate from the uncontrolled ions migration behavior of Zn2+ , SO4 2- , and H+ , which are largely compromising the aqueous zinc ion batteries (AZIBs) performance. Exploring the ultimate strategy to eliminate all the Zn anode issues is challenging but urgent at present. Herein, a fluorinated separator interface (PVDF@GF) is constructed simply by grafting the polyvinylidene difluoride (PVDF) on the GF surface to realize high-performance AZIBs. Experimental and theoretical studies reveal that the strong interaction between C─F bonds in the PVDF and Zn2+ ions enables evenly redistributed Zn2+ ions concentration at the electrode interface and accelerates the Zn transportation kinetics, leading to homogeneous and fast Zn deposition. Furthermore, the electronegative separator interface can spontaneously repel the SO4 2- and anchor H+ ions to alleviate the passivation and corrosion. Accordingly, the Zn|Zn symmetric cell with PVDF@GF harvests a superior cycling stability of 500 h at 10 mAh cm-2 , and the Zn|VOX full cell delivers 76.8% capacity retention after 1000 cycles at 2 A g-1 . This work offers an all-round solution and provides new insights for the design of advanced separators with ionic sieve function toward stable and reversible Zn metal anode chemistry.

9.
Plant Physiol ; 194(3): 1906-1922, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37987562

RESUMEN

Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.


Asunto(s)
Malus , Tolerancia a la Sal , Tolerancia a la Sal/genética , Malus/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
10.
Mol Neurobiol ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919601

RESUMEN

Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.

11.
Mol Carcinog ; 62(12): 1974-1989, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792308

RESUMEN

Testis expression 10 (Tex10) is reported to be associated with tumorigenesis in several types of cancer types, but its role in hepatocellular carcinoma (HCC) metastasis has not been investigated. In this study, the expression of Tex10 in the HCC cell line and tissue microarray was determined by Western blot and immunohistochemistry (IHC), respectively. RNA sequencing-based transcriptome analysis was performed to identify the Tex10-mediated biological process. Cell Counting Kit-8, colony formation, transwell assays, xenograft tumor growth, and lung metastasis experiments in nude mice were applied to assess the effects of Tex10 on cell proliferation, migration, invasion, and metastasis. The underlying mechanisms were further investigated using dual-luciferase reporter, co-immunoprecipitation, immunofluorescence, and chromatin immunoprecipitation assays. We found that Tex10 was upregulated in HCC tumor tissues compared to adjacent normal tissues, with its expression correlated with a poor prognosis. Gene ontology function enrichment analysis revealed alterations in several biological processes in response to Tex10 knockdown, especially cell motility and cell migration. Functional studies demonstrated that Tex10 promotes HCC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Moreover, Tex10 was shown to regulate invasion and epithelial-mesenchymal transition via signal transducer and activator of transcription 3 (STAT3) signaling. Mechanistically, Tex10 was found to interact with STAT3 and promote its transcriptional activity. In addition, we found that Tex10 promotes p300-mediated STAT3 acetylation, while p300 silencing abolishes Tex10-enhanced STAT3 transcriptional activity. Together, these findings indicate that Tex10 functions as an oncogene by upregulating STAT3 activity, thus suggesting that Tex10 may serve as a prognostic biomarker and/or therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia
12.
ACS Chem Neurosci ; 14(21): 3913-3927, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37818657

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder underlying dementia in the geriatric population. AD manifests by two pathological hallmarks: extracellular amyloid-ß (Aß) peptide-containing senile plaques and intraneuronal neurofibrillary tangles comprised of aggregated hyperphosphorylated tau protein (p-tau). However, more than half of AD cases also display the presence of aggregated α-synuclein (α-syn)-containing Lewy bodies. Conversely, Lewy bodies disorders have been reported to have concomitant Aß plaques and neurofibrillary tangles. Our drug discovery program focuses on the synthesis of multitarget-directed ligands to abrogate aberrant α-syn, tau (2N4R), and p-tau (1N4R) aggregation and to slow the progression of AD and related dementias. To this end, we synthesized 11 compounds with a triazine-linker and evaluated their effectiveness in reducing α-syn, tau isoform 2N4R, and p-tau isoform 1N4R aggregation. We utilized biophysical methods such as thioflavin T (ThT) fluorescence assays, transmission electron microscopy (TEM), photoinduced cross-linking of unmodified proteins (PICUP), and M17D intracellular inclusion cell-based assays to evaluate the antiaggregation properties and cellular protection of our best compounds. We also performed disaggregation assays with isolated Aß-plaques from human AD brains. Our results demonstrated that compound 10 was effective in reducing both oligomerization and fibril formation of α-syn and tau isoform 2N4R in a dose-dependent manner via ThT and PICUP assays. Compound 10 was also effective at reducing the formation of recombinant α-syn, tau 2N4R, and p-tau 1N4R fibrils by TEM. Compound 10 reduced the development of α-syn inclusions in M17D neuroblastoma cells and stopped the seeding of tau P301S using biosensor cells. Disaggregation experiments showed smaller Aß-plaques and less paired helical filaments with compound 10. Compound 10 may provide molecular scaffolds for further optimization and preclinical studies for neurodegenerative proteinopathies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Anciano , Humanos , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Isoformas de Proteínas
13.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37834443

RESUMEN

The P301L mutation in tau protein is a prevalent pathogenic mutation associated with neurodegenerative frontotemporal dementia, FTD. The mechanism by which P301L triggers or facilitates neurodegeneration at the molecular level remains unclear. In this work, we examined the effect of the P301L mutation on the biochemical and biological characteristics of pathologically relevant hyperphosphorylated tau. Hyperphosphorylated P301L tau forms cytotoxic aggregates more efficiently than hyperphosphorylated wildtype tau or unphosphorylated P301L tau in vitro. Mechanistic studies establish that hyperphosphorylated P301L tau exacerbates endoplasmic reticulum (ER) stress-associated gene upregulation in a neuroblastoma cell line when compared to wildtype hyperphosphorylated tau treatment. Furthermore, the microtubule cytoskeleton is severely disrupted following hyperphosphorylated P301L tau treatment. A hyperphosphorylated tau aggregation inhibitor, apomorphine, also inhibits the harmful effects caused by P301L hyperphosphorylated tau. In short, the P301L single mutation within the core repeat domain of tau renders the underlying hyperphosphorylated tau more potent in eliciting ER stress and cytoskeleton damage. However, the P301L mutation alone, without hyperphosphorylation, is not sufficient to cause these phenotypes. Understanding the conditions and mechanisms whereby selective mutations aggravate the pathogenic activities of tau can provide pivotal clues on novel strategies for drug development for frontotemporal dementia and other related neurodegenerative tauopathies, including Alzheimer's disease.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Tauopatías , Ratones , Animales , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Demencia Frontotemporal/genética , Ratones Transgénicos , Tauopatías/metabolismo , Mutación , Citoesqueleto/metabolismo
14.
PeerJ ; 11: e15920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663290

RESUMEN

Objectives: Identification of endometrial cancers (EC) with mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) is essential for Lynch syndrome screening and treatment stratification. We aimed to assess the utility of immunohistochemistry (IHC) staining for MMR protein expression and polymerase chain reaction (PCR)-based MSI assays in EC and the correlation between MMR/MSI status and various clinicopathological parameters. Methods: We reviewed the clinical and pathological information of 333 patients with EC. MMR protein expression was assessed as retained or lost to determine MMR status by IHC staining, and MSI status was identified by PCR capillary electrophoresis (PCR-CE) testing with a National Cancer Institute (NCI) panel. The correlation of MMR/MSI status with clinicopathological features was determined by statistical analysis. Discrepant results were further analyzed using an alternative PCR-CE MSI (Promega panel) method, MLH1 promoter methylation assays, and next-generation sequencing (NGS). Results: Among the EC patients, the overall percentage of dMMR was 25.2%, and the overall percentage of MSI-H was 24%. Among the dMMR patients, 50 (59.5%) showed loss of MLH1 and PMS2 expression, 19 (22.6%) loss of MSH2 and MSH6 expression, and seven (8.3%) and eight (9.5%) loss of PMS2 and MSH6 expression, respectively. The dMMR subgroup was significantly younger than the pMMR subgroup, especially for <60-years-old patients (p = 0.038). In addition, we identified a strong correlation between MMR/MSI status and high-grade endometrioid or nonendometrioid components (p = 0.004 or p = 0.003). IHC staining and PCR-CE assay results showed a high level of overall concordance (98.8%, Cohen's κ = 0.98). Four patients were found to have dMRR/MSS in both examinations. We reanalyzed them with additional methods. One case showed MLH1 promotor methylation, and the other three cases harbored MSH6 germline pathogenic variations. One of the cases with MSH6 deficiency was reanalyzed as MSI-H by alternative PCR-CE assay or NGS testing. Conclusions: This study indicates that the combined use of MMR-IHC and PCR-CE MSI analyses may effectively avoid misdiagnoses of EC patients with dMMR/MSI-H. However, use of PCR-CE alone to evaluate MMR/MSI status may lead to missed diagnosis, especially for EC patients with MSH6 deficiency and presenting MSS.


Asunto(s)
Neoplasias Endometriales , Inestabilidad de Microsatélites , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Endometriales/diagnóstico , Inmunohistoquímica , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Estudios Retrospectivos
15.
Brain Sci ; 13(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509017

RESUMEN

Cerebral Small Vessel Disease (CSVD) frequently affects the elderly, with inflammation playing a crucial role in related health complications, including dementia, stroke, and SVD. Studies, including animal experiments, indicate a strong link between inflammation and SVD progression. The Neutrophil-Lymphocyte Ratio (NLR) serves as a possible biomarker for ongoing inflammatory risks. A total of 720 adults aged 50 years or older from the community-based I-Lan Longitudinal Aging Study were included in this study. General linear regression and ordinally logistic regression analyses were performed to evaluate the association between NLR and CSVD. We further examined the presence of lacune, microbleed, and white matter hyperintensity (WMH) on brain MRI, which were used to construct a combined CSVD score. The NLR was positively associated with WMH (adjusted r = 0.109, p = 0.003), microbleed (adjusted r = 0.102, p = 0.006), and lacune (adjusted r = 0.100, p = 0.008). After adjustments for smoking, drinking, and physical activity in the ordinal logistic regression analysis, age, gender, brachial Systolic Blood Pressure (SBP), fasting glucose, LDL-cholesterol, and Hs-CRP were compared among subjects with low tertile (T1), medium tertile (T2) and high tertile (T3) NLR. The results showed that T2 vs. T1 had an odds ratio of 1.23 (0.86-1.77); and T3 vs. T1 had an odds ratio of 1.87 (1.29-2.71) of CSVD scores in four groups (zero (reference group), one, two, and three or more). NLR could be used to assess the state of inflammation in cerebral vessels. A significant and positive correlation between NLR and CSVD was verified in this study. However, the practical clinical application of NLR in CSVD patients and prognosis prediction should be validated through more scientific attempts.

16.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292976

RESUMEN

Background: Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods: Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results: Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion: Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.

17.
Ultrason Sonochem ; 96: 106433, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37163955

RESUMEN

In order to address the issue of nobiletin's limited bioavailability, nobiletin nanoparticles (NNP) were created for the first time in this research employing an anti-solvent under ultrasonication-cis/reverse homogenization. Dimethyl sulfoxide (DMSO) was used as the solvent and deionized water as the anti-solvent to create the nobiletin solution. The optimal surfactant dose of surfactant dose of 0.43%; an ultrasonic period of 8.1 min, ultrasonic at a temperature of 64 °C and a solution concentration of 8.33 mg/mL, the method was optimized to obtain the minimum NNP diameter of 199.89 ± 0.02 nm. A dual optimization process of response surface PBD and BBD was used to minimize the size of HNP particles. Additionally, scanning electron microscopy revealed that the specific surface area of the NNP dramatically increased with the reduction of NNP particle size, and dissolving studies indicated the solubility and dissolution studies showed that NNP had substantially greater solubility and dissolution rates than raw nobiletin per unit time; as a result, the NNP produced by anti-solvent precipitation with a twofold homogenization system supported by ultrasound had a realistic potential for growth.

18.
Front Plant Sci ; 14: 1161539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077638

RESUMEN

The 14-3-3 (GRF, general regulatory factor) regulatory proteins are highly conserved and are widely distributed throughout the eukaryotes. They are involved in the growth and development of organisms via target protein interactions. Although many plant 14-3-3 proteins were identified in response to stresses, little is known about their involvement in salt tolerance in apples. In our study, nineteen apple 14-3-3 proteins were cloned and identified. The transcript levels of Md14-3-3 genes were either up or down-regulated in response to salinity treatments. Specifically, the transcript level of MdGRF6 (a member of the Md14-3-3 genes family) decreased due to salt stress treatment. The phenotypes of transgenic tobacco lines and wild-type (WT) did not affect plant growth under normal conditions. However, the germination rate and salt tolerance of transgenic tobacco was lower compared to the WT. Transgenic tobacco demonstrated decreased salt tolerance. The transgenic apple calli overexpressing MdGRF6 exhibited greater sensitivity to salt stress compared to the WT plants, whereas the MdGRF6-RNAi transgenic apple calli improved salt stress tolerance. Moreover, the salt stress-related genes (MdSOS2, MdSOS3, MdNHX1, MdATK2/3, MdCBL-1, MdMYB46, MdWRKY30, and MdHB-7) were more strongly down-regulated in MdGRF6-OE transgenic apple calli lines than in the WT when subjected to salt stress treatment. Taken together, these results provide new insights into the roles of 14-3-3 protein MdGRF6 in modulating salt responses in plants.

19.
Small ; 19(20): e2300130, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36794300

RESUMEN

Uncontrollable dendrite growth and sluggish ion-transport kinetics are considered as the main obstacles for the further development of high-performance aqueous zinc ion batteries (AZIBs). Here, a nature-inspired separator (ZnHAP/BC) is developed to tackle these issues via the hybridization of the biomass-derived bacterial cellulose (BC) network and nano-hydroxyapatite particles (HAP). The as-prepared ZnHAP/BC separator not only regulates the desolvation process of the hydrated Zn2+ ions (Zn(H2 O)6 2+ ) by suppressing the water reactivity through the surface functional groups, alleviating the water-induced side-reactions, but also boosts the ion-transport kinetics and homogenize the Zn2+ flux, resulting in a fast and uniform Zn deposition. Remarkably, the Zn|Zn symmetric cell with ZnHAP/BC separator harvests a long-term stability over 1600 h at 1 mA cm-2 , 1 mAh cm-2 and endures stable cycling over 1025 and 611 h even at a high depth of discharge (DOD) of 50% and 80%, respectively. The Zn|V2 O5 full cell with a low negative/positive (N/P) capacity ratio of 2.7 achieves a superior capacity retention of 82% after 2500 cycles at 10 A g-1 . Furthermore, the Zn/HAP separator can be totally degraded within 2 weeks. This work develops a novel nature-derived separator and provides insights in constructing functional separators toward sustainable and advanced AZIBs.

20.
Sci Total Environ ; 856(Pt 2): 159229, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208770

RESUMEN

Phytoliths are silica biomineralization products within plants and have been considered as a promising material to sequester carbon (C). However, there is considerable uncertainty and controversy regarding the C content in phytoliths due to the lack of detailed information on variation of C under different extraction procedures. Herein, we established a series of batch digestion experimental procedures coupled with analyses of phytoliths using Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy to divide phytoliths into three fractions. We then reported an approach for standardizing across hundreds of values found in the literature. Combining this standardized approach with C contents in phytoliths extracted from different digestion degrees, we revaluated the potential production rates of phytolith-occluded carbon (PhytOC) input globally in rice paddy fields. The results showed that the C content in recovered phytoliths exhibited a significantly fitting exponential relationship (p < 0.01) with digestion degrees and decreased from 30 to 75 g kg-1 under moderate digestion to <5 g kg-1 under over digestion. On a global scale, the production of total PhytOC in the world paddy fields reached up to (2.71 ± 0.85) × 106 t year-1. Therein, the contribution of sub-stable PhytOC fraction, stable PhytOC fraction, and recalcitrant PhytOC fraction was 63 %, 28 %, and 9 %, respectively. Our results imply that the estimation of phytolith C sequestration potential across the global paddy fields is associated with specific PhytOC fractions. Therefore, further determining the storage time limits of these specific PhytOC fractions after returning to soil will be vital for predicting terrestrial biogeochemical C sequestration potentials of phytoliths.


Asunto(s)
Secuestro de Carbono , Oryza , Carbono/análisis , Suelo/química , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA