Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biol Sport ; 41(3): 61-68, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952906

RESUMEN

K1-format kickboxing is a widely followed combat sport that requires intense physical exercise. However, research into the body's response to this type of combat is sparse. This study aims to assess the alterations in hormone levels and brain activity in elite kickboxers following an actual K1 bout and compare these changes with those observed in a control group engaged in a simulated fight exercise with a punchbag. The study included 100 male professional kickboxers, randomly divided into two groups: an experimental group (K1 fight) and a control group (simulated fight with a punchbag). Blood samples were obtained before and after exercise to evaluate testosterone (T) and cortisol concentrations (C). Concurrently, brain activity was recorded using quantitative electroencephalography (QEEG). After the activity in the experimental group mean testosterone level slightly, non-significantly decreased from 13.7 nmol/l to 12.4 nmol/l, while mean cortisol significantly (p < 0.001) increased from 313 to 570 nmol/l. In the control group after the exertion against a punchbag mean cortisol significantly (p < 0.001) increased from 334 to 452 nmol/l and testosterone increased non-significantly, from 15.1 to 16.3 nmol/l. In both groups, the testosterone/cortisol ratio (T/C ratio) showed significantly lower levels after the intervention (p < 0.001 and p < 0.032) in the experimental and control group respectively. The comparison of groups after exercise revealed significantly higher cortisol levels (experimental group x = 570 nmol/l; control group x = 452 nmol/l) and a significantly lower T/C ratio (experimental group x = 2.7; control group x = 3.9), (p = 0.001) in the experimental group. Significantly higher brain activity was found in selected leads after a bout (experimental group). Furthermore, in the experimental group, significant associations of weak to moderate strength were found between hormone fluctuations and selected areas of brain activity (p < 0.05). K1-format kickboxing induces a stress response, evident in the sharp changes in cortisol and testosterone levels. A notable observation was the inverse direction of changes in both hormones. Brain activity analysis indicated the potential influence of raised cortisol concentrations on specific brain areas. This study augments our understanding of the physiological responses during K1 kickboxing bouts and may inform the future evolution of this sport.

2.
Biol Sport ; 41(2): 155-161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38524829

RESUMEN

The main aim of this study is to use comprehensive statistical analyses to evaluate measurement reliability of selected variables that characterize postural stability. The study examined twenty-nine healthy non-athlete students. The examinations were performed twice, with a one-week interval. The Microgate GYKO inertial sensor system was used to evaluate the reliability of variables that characterize postural stability. The relative reliability of the repeated test was evaluated using the intraclass correlation coefficient (ICC) with 95% confidence interval (95% CI). Next, the standard error of measurement (SEM) and minimal detectable change (MDC) were computed. Relative reliability of the repeated test for all analysed variables of ICC ranged from 0.31 to 0.75. For four variables, ICC values were ca. 0.7, i.e., they can be considered as good. For four other variables, ICC ranged from 0.41 to 0.54, with these values considered fair. Satisfactory reproducibility of postural stability measurements using the GYKO inertial sensor system demonstrates that it can offer an inexpensive and efficient alternative to measurements that use force balance platforms.

3.
J Clin Med ; 13(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38256514

RESUMEN

BACKGROUND: Obesity, a common lifestyle-related condition, is correlated with factors like inadequate physical activity. Its connection to diverse health issues presents a significant challenge to healthcare. This pilot study investigated the effects of hypoxic training on aerobic capacity and biometric-structural indicators in obese women. The secondary objective was to determine the feasibility, effectiveness, and safety of the planned research procedures and their potential for larger-scale implementation. MATERIAL AND METHODS: Forty-one non-trained women with first-degree obesity were randomly assigned to even normobaric hypoxic training (H + E), normoxic training (E), passive exposure to hypoxia (H), and a control group (C). Training sessions were conducted three times a week for four weeks (12 training sessions). Body composition parameters were assessed, metabolic thresholds were determined, and maximal oxygen consumption (VO2max) was measured before and after interventions. RESULTS: The results demonstrated that training in hypoxic conditions significantly affected somatic parameters, with the H + E group achieving the best outcomes in terms of weight reduction and improvements in body composition indicators (p < 0.001). Normoxic training also induced a positive impact on body weight and body composition, although the results were less significant compared to the H + E group (p < 0.001). Additionally, training in hypoxic conditions significantly improved the aerobic capacity among the participants (p < 0.001). The H + E group achieved the best results in enhancing respiratory endurance and oxygen consumption (p < 0.001). CONCLUSIONS: The results of this pilot study suggest, that hypoxic training can be effective for weight reduction and improving the aerobic capacity in obese women. Despite study limitations, these findings indicate that hypoxic training could be an innovative approach to address obesity and related conditions. Caution is advised in interpreting the results, considering both the strengths and limitations of the pilot study. Before proceeding to a larger-scale study, the main study should be expanded, including aspects such as dietary control, monitoring physical activity, and biochemical blood analysis.

4.
Nutrients ; 16(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257108

RESUMEN

Vitamin D, calcium, and iron are micronutrients crucial for bone health. However, their effect has been studied primarily in the cortical bone, with vitamin D status being assessed mainly from the total 25(OH)D serum fraction. The study aimed to investigate the impact of vitamin D (total and free fraction) and iron status (i.e., serum ferritin or soluble transferrin receptor) and calcium intake (ADOS-Ca questionnaire) on lumbar cortical and trabecular bone. In a cohort of 113 male subjects (76 athletes, 37 non-athletes) aged 15-19, the lumbar spine status (Z-score, bone mineral apparent density (BMAD), and trabecular bone score (TBS)) was determined using dual-energy X-ray absorptiometry (DXA). Relationships between the examined micronutrients and bone health parameters were observed only in athletes. Free 25(OH)D was significantly (p < 0.001) correlated with Z-score and BMAD, while total 25(OH)D (p < 0.001) and iron status (ferritin, Fe stores; p < 0.01) correlated solely with BMAD. Free 25(OH)D and ferritin concentrations were the best determinants of bone status (R2 = 0.330; p < 0.001) and explained 25% and 7% of the BMAD variance, respectively. No relationships were found between the micronutrients and TBS. The results confirmed the positive influence of vitamin D and iron on cortical, but not trabecular, bone status solely in physically active subjects. In athletes, free 25(OH)D seems to be a superior indicator of bone health to a total 25(OH)D fraction.


Asunto(s)
Calcio de la Dieta , Vitamina D , Humanos , Masculino , Densidad Ósea , Calcio , Ferritinas , Hierro , Micronutrientes , Vitaminas , Adolescente , Adulto Joven
5.
PLoS One ; 14(2): e0210260, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30726211

RESUMEN

Our objective was to examine how exercises with the second generation of the Microsoft Kinect sensor may aid in the process of motor learning in young judo practitioners. We addressed improvements in spatio-temporal accuracy during execution of three standing techniques in judo, in a simple paradigm designed to study short-term practice effects. Two groups of judokas, 12 athletes each-one aided with Kinect and our dedicated software vs a group of controls-were asked to mimic previously recorded master-level performances of the three techniques, established as benchmarks by a two times world champion in judo. In five training sessions, athletes of the aided group used a virtual-reality setup in which they trained with a virtual representation of the master displayed on a large screen with a simultaneous real-time visualisation of their own movements in the form of an avatar based on body joint localisation, as determined by Kinect, which also measured their performance. The control group used Kinect in the 1st and 5th session, which was necessary for the measurements that constituted the basis for subsequent statistical comparisons, whereas the 2nd, 3rd, and 4th session in this group was guided by a coach, without the use of the Kinect setup. In addition, athletes of the two groups had unrestricted access to a video recording of the master performing the three throws. We found statistically significant improvements (p < 0.05) in the accuracy of executing the three techniques between the 1st and the 5th training session for the aided group but not for the control group. We conclude that incorporating Kinect based exercises into a judo training programme may be a useful means to supporting motor learning, therefore enhancing training efficiency, and thus improving performance.


Asunto(s)
Atletas , Aprendizaje/fisiología , Artes Marciales , Destreza Motora/fisiología , Movimiento/fisiología , Programas Informáticos , Adolescente , Adulto , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA