Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Sci (Weinh) ; : e2309264, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828782

RESUMEN

Se alloying has enabled significantly higher carrier lifetimes and photocurrents in CdTe solar cells, but these benefits can be highly dependent on CdSexTe1-x processing. This work evaluates the optoelectronic, chemical, and electronic properties of thick (3 µm) undoped CdSexTe1-x of uniform composition and varied processing conditions (CdSexTe1-x evaporation rate, CdCl2 anneal, Se content) chosen to reflect various standard device processing conditions. Sub-bandgap defect emission is observed, which increased as Se content increased and with "GrV-optimized CdCl2" (i.e., CdCl2 anneal conditions used for group-V-doped devices). Low carrier lifetime is found for GrV-optimized CdCl2, slow CdSexTe1-x deposition, and low-Se films. Interestingly, all films (including CdTe control) exhibited n-type behavior, where electron density increased with Se up to an estimated ≈1017 cm-3. This behavior appears to originate during the CdCl2 anneal, possibly from Se diffusion leading to anion vacancy (e.g., VSe, VTe) and ClTe generation.

2.
Nature ; 611(7935): 278-283, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049505

RESUMEN

Perovskite solar cells (PSCs) with an inverted structure (often referred to as the p-i-n architecture) are attractive for future commercialization owing to their easily scalable fabrication, reliable operation and compatibility with a wide range of perovskite-based tandem device architectures1,2. However, the power conversion efficiency (PCE) of p-i-n PSCs falls behind that of n-i-p (or normal) structure counterparts3-6. This large performance gap could undermine efforts to adopt p-i-n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit7,8. Here we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface formamidinium ions, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps and terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p-i-n PSCs obtained a PCE of over 25 per cent, along with retaining 87 per cent of the initial PCE after over 2,400 hours of 1-sun operation at about 55 degrees Celsius in air.

3.
Sci Rep ; 12(1): 12851, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896581

RESUMEN

Cadmium telluride (CdTe) semiconductors are used in thin-film photovoltaics, detectors, and other optoelectronic applications. For all technologies, higher efficiency and sensitivity are achieved with reduced charge carrier recombination. In this study, we use state-of-the-art CdTe single crystals and electro-optical measurements to develop a detailed understanding of recombination rate dependence on excitation and temperature in CdTe. We study recombination and carrier dynamics in high-resistivity (undoped) and arsenic (As)-doped CdTe by employing absorption, the Hall effect, time-resolved photoluminescence, and pump-probe in the 80-600 K temperature range. We report extraordinarily long lifetimes (30 µs) at low temperatures in bulk undoped CdTe. Temperature dependencies of carrier density and mobility reveal ionization of the main acceptors and donors as well as dominant scattering by ionized impurities. We also distinguish different recombination defects. In particular, shallow AsTe and deep VCd-AsCd acceptors were responsible for p-type conductivity. AX donors were responsible for electron capture, while nonradiative recombination centers (VCd-AsTe, As2 precipitates), and native defects (VCd-TeCd) were found to be dominant in p-type and n-type CdTe, respectively. Bimolecular and surface recombination rate temperature dependencies were also revealed, with bimolecular coefficient T-3/2 temperature dependence and 170 meV effective surface barrier, leading to an increase in surface recombination velocity at high temperatures and excitations. The results of this study allowed us to conclude that enhanced crucible rotation growth of As-doped CdTe is advantageous to As activation, leading to longer lifetimes and larger mobilities and open-circuit voltages due to lower absorption and trapping.

4.
ACS Nano ; 15(12): 19334-19344, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34859993

RESUMEN

Perovskite quantum dots (PQDs) have many properties that make them attractive for optoelectronic applications, including expanded compositional tunability and crystallographic stabilization. While they have not achieved the same photovoltaic (PV) efficiencies of top-performing perovskite thin films, they do reproducibly show high open circuit voltage (VOC) in comparison. Further understanding of the VOC attainable in PQDs as a function of surface passivation, contact layers, and PQD composition will further progress the field and may lend useful lessons for non-QD perovskite solar cells. Here, we use photoluminescence-based spectroscopic techniques to understand and identify the governing physics of the VOC in CsPbI3 PQDs. In particular, we probe the effect of the ligand exchange and contact interfaces on the VOC and free charge carrier concentration. The free charge carrier concentration is orders of magnitude higher than in typical perovskite thin films and could be tunable through ligand chemistry. Tuning the PQD A-site cation composition via replacement of Cs+ with FA+ maintains the background carrier concentration but reduces the trap density by up to a factor of 40, reducing the VOC deficit. These results dictate how to improve PQD optoelectronic properties and PV device performance and explain the reduced interfacial recombination observed by coupling PQDs with thin-film perovskites for a hybrid absorber layer.

5.
Sci Rep ; 7(1): 4563, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676701

RESUMEN

Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping. Two As-doped CdTe with varying acceptor density and two undoped CdTe were grown in Cd-rich and Te-rich environments. The defect structures were investigated by thermoelectric-effect spectroscopy (TEES), and first-principles calculations were used for identifying and assigning the experimentally observed defects. Measurements revealed activation of As is very low in both As-doped samples with very short lifetimes indicating strong compensation and the presence of significant carrier trapping defects. Defect studies suggest two acceptors and one donor level were introduced by As doping with activation energies at ~88 meV, ~293 meV and ~377 meV. In particular, the peak shown at ~162 K in the TEES spectra is very prominent in both As-doped samples, indicating a signature of AX-center donors. The AX-centers are believed to be responsible for most of the compensation because of their low formation energy and very prominent peak intensity in TEES spectra.

6.
Phys Rev Lett ; 111(6): 067402, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23971610

RESUMEN

CdTe is one of the most promising materials for thin-film solar cells. However, further improvement of its performance is hindered by its relatively short minority-carrier lifetime. Combining theoretical calculations and experimental measurements, we find that for both intrinsic CdTe and CdTe solar cell devices, longer minority-carrier lifetimes can be achieved under Cd-rich conditions, in contrast to the previous belief that Te-rich conditions are more beneficial. First-principles calculations suggest that the dominant recombination centers limiting the minority-carrier lifetime are the Te antisite and Te interstitial. Therefore, we propose that to optimize the solar cell performance, extrinsic p-type doping (e.g., N, P, or As substitution on Te sites) in CdTe under Cd-rich conditions should be a good approach to simultaneously increase both the minority-carrier lifetime and hole concentration.

7.
J Phys Chem B ; 114(48): 16029-35, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21069973

RESUMEN

We used picosecond transient absorption and fluorescence lifetime spectroscopy to study singlet exciton annihilation and depolarization in self-assembled aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS(4)) and a synthetic 22-residue polypeptide. The polypeptide was designed and previously shown to bind three TPPS(4) monomers via electrostatic interactions between the sulfonate groups and cationic lysine residues. Additionally, the peptide induces formation of TPPS(4) J-aggregates in acidic solutions when the peptide secondary structure is disordered. In neutral solutions, the peptide adopts an α-helical secondary structure that can bind TPPS(4) with high affinity but J-aggregate formation is inhibited. Detailed analysis of excitation-power dependent transient absorption kinetics was used to obtain rate constants describing the energy transfer between TPPS(4) molecules in an aggregate under acidic and neutral conditions. Independently, such analysis was confirmed by picosecond fluorescence emission depolarization measurements. We find that energy transfer between TPPS(4) monomers in a peptide-TPPS(4) complex is more than 30 times faster in acidic aqueous solution than in neutral solutions (9 vs 279 ps). This result was attributed to a conformational change of the peptide backbone from disordered at low pH to α-helical at neutral pH and suggests a new approach to control intermolecular energy transfer with possible applications in fluorescent sensors or biomimetic light harvesting antennas.


Asunto(s)
Péptidos/química , Porfirinas/química , Transferencia de Energía , Cinética , Modelos Moleculares , Estructura Molecular , Espectrometría de Fluorescencia , Factores de Tiempo
8.
J Phys Chem B ; 113(43): 14439-47, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19845410

RESUMEN

Using absorbance, fluorescence, resonance light scattering, and circular dichroism spectroscopy, we studied the self-assembly of the anionic meso-tetra(4-sulfonatophenyl)porphine (TPPS(4)(2-/4-)) and a cationic 22-residue polypeptide. We found that three TPPS(4)(2-/4-) molecules bind to the peptide, which contains nine lysine residues in the primary sequence. In acidic solutions, when the peptide is in the random-coil conformation, TPPS(4)(2-) bound to the peptide forms excitonically coupled J-aggregates. In pH 7.6 solutions, when the peptide secondary structure is partially alpha-helical, the porphyrin-to-peptide binding constants are approximately the same as in acidic solutions (approximately 3 x 10(6) M(-1)), but excitonic interactions between the porphyrins are insignificant. The binding of TPPS(4)(2-/4-) to lysine-containing peptides is cooperative and can be described by the Hill model. Our results show that porphyrin binding can be used to change the secondary structure of peptide-based biomaterials. In addition, binding to peptides could be used to optimize porphyrin intermolecular electronic interactions (exciton coupling), which is relevant for the design of light-harvesting antennas for artificial photosynthesis.


Asunto(s)
Péptidos/química , Porfirinas/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Unión Proteica , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta
9.
J Phys Chem B ; 110(45): 22796-803, 2006 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17092030

RESUMEN

The free volume properties of phospholipid bilayers have been determined using a new assay that applies the photochromic and solvatochromic properties of merocyanines. The orientation and embedding depth of the merocyanines in the bilayer are controlled using substitution on the merocyanine indole moiety. The free volume changes at the aqueous interface (region 1), the phospholipid headgroup (region 2), and the aliphatic interior (region 3) of the bilayer are compared by analyzing the rate constants for the merocyanine ring-closing reaction. Free volume variations during the P(beta)(')(gel) <--> L(alpha)(liquid) phase transition are observed in region 1, in accordance with large structural rearrangements between the gel and the liquid phases in this region. The largest free volume is found in region 3, and the smallest is found in region 2. This distribution of free volume in the bilayer agrees with computational studies of these systems. Comparison of the free volume in region 2 of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids shows that this method is sensitive to small structural differences between lipids. In region 2, the free volume is found to be approximately 2 times larger in DPPC bilayers, which could be related to different merocyanine interactions with the two phosphatidylcholines. Free volume properties determined on picosecond and second time scales are compared based on an analysis of merocyanine formation and decoloration reactions.


Asunto(s)
Colorantes Fluorescentes/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Pirimidinonas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/química , Cinética , Modelos Biológicos , Modelos Químicos , Termodinámica
10.
J Am Chem Soc ; 128(12): 3902-3, 2006 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-16551085

RESUMEN

Two-photon absorption processes were investigated in electropolymerized Fe(III), Mn(III), and Co(II) 5,10,15,20-tetrakis-(4-hydroxytetraphenyl)porphyrin films. Degenerate four wave mixing (DFWM) spectroscopy with 100 fs pulses in the near-IR spectral region was used. Metalloporphyrins with strong charge transfer (CT) transitions in the linear absorption spectra also show enhanced two-photon absorption. (Metalloporphyrin two-photon absorption cross section, delta, increases >10 times over that for the metal free porphyrin.) This effect was attributed to a two-photon induced charge transfer between the metal ion's d orbitals and the pi-system of the porphyrin. Correlation of one- and two-photon absorption properties of transition metal porphyrins suggests a new and simple approach to improve organic materials for photonic applications.


Asunto(s)
Metaloporfirinas/química , Cobalto/química , Compuestos Férricos/química , Manganeso/química , Fotones , Porfirinas/química , Análisis Espectral/métodos
11.
J Phys Chem B ; 109(46): 21496-8, 2005 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-16853790

RESUMEN

A series of oligomers consisting of ethynyl-linked azobenzene units was prepared using Pd-catalyzed cross coupling. The linear and nonlinear optical properties of the oligomers were investigated. The molecular second hyperpolarizability, gamma, followed the power law gamma proportional, variant n(2.12+/-0.05) (n is the number of repeat units) for unusually large molecular lengths exceeding 360 conjugated bonds (>49 nm). The exceptional exciton delocalization length is attributed to the rigidity of the conjugated backbone.

12.
J Phys Chem B ; 109(46): 21893-9, 2005 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-16853844

RESUMEN

Transient absorption spectroscopy was used to investigate the dynamics of the photochromic indolinobenzospiropyran reaction in toluene solution and in phosphatidylcholine bilayers (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)). After excitation with UV light, colorless (R/S)-2-(3',3'-dimethyl-6-nitro-3'H-spiro[chromene-2,2'-indol]-1'-yl)ethanol derivatives are converted to colored merocyanine products in high yield; Phi = 0.45 in DMPC liposomes. We find that the reaction occurs in the bilayer aliphatic region in the gel (P(beta)(')) and liquid (L(alpha)) phases. The Arrhenius activation energy for the isomerization in DMPC bilayers was approximately 3.5 times larger in the liquid phase (L(alpha), E(a) = 26.0 +/- 1.0 kJ mol(-1)) than that in the gel phase (P(beta)('), E(a) = 7.3 +/- 1.6 kJ mol(-1)). Analysis of the isomerization rate constant temperature dependence allows an estimation of the bilayer viscosity and free volume properties in the L(alpha) phase.


Asunto(s)
Benzopiranos/química , Indoles/química , Membrana Dobles de Lípidos/química , Nitrocompuestos/química , Fosfolípidos/química , Cinética , Estructura Molecular , Fotoquímica , Soluciones/química , Estereoisomerismo , Temperatura , Factores de Tiempo , Tolueno/química
13.
J Phys Chem B ; 109(47): 22186-91, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16853887

RESUMEN

Merocyanine (MC) isomers that are formed after absorption of a UV photon by 1',3'-dihydro-1',3'-3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2',2'-(2H)-indole] were studied. Several, predominantly TTC and TTT, merocyanine isomers are present in toluene solution ("T" and "C" indicate trans and cis conformations of the C-C bonds in the methine bridge). Excitation in the MC visible absorption band (at 490, 550, and 630 nm) with 100 fs laser pulses was used to study MC excited-state dynamics. Internal conversion on the picosecond time scale was found to be the dominant relaxation pathway. Excited-state isomerization reactions were also observed. Excitation at 630 nm (assigned to TTC isomer excitation) leads to formation of a third isomer (either CTC or CTT). Excitation at 490 nm (assigned to TTT isomer excitation) leads to more complex excited-state relaxation, including formation of two isomers: TTC (absorption at 600 nm) and CTC or CTT (absorption at 650 nm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA