Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 14(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35622561

RESUMEN

Yeast cell wall-based preparations have shown efficacy against Aspergillus-based toxins but have lower impact against type-B trichothecenes. Presently, we investigated a combination of deoxynivalenol (DON), T-2 toxin (T2) and zearalenone (ZEA), and the effect of a yeast cell wall extract (YCWE) and a post-biotic yeast cell wall-based blend (PYCW) with the objectives of preventing mycotoxins' negative effects in commercial broilers. A total of 720 one-day-old male Cobb broilers were randomly allocated to: (1) control diet, (aflatoxins 6 µg/kg; cyclopiazonic acid 15 µg/kg; fusaric acid 25 µg/kg; fumonisin B1 310 µg/kg); (2) Diet1 + 0.2% YCWE; (3) Diet1 + 0.2% PYCW; (4) Contaminated diet (3.0 mg/kg DON; 2.17 mg/kg 3-acetyldeoxynivalenol; 104 g/kg T2; 79 g/kg ZEA); (5) Diet4 + 0.2% YCWE; and (6) Diet4 + 0.2% PYCW. Naturally contaminated diets adversely affected performance, serum biochemistry, liver function, immune response, altered cecal SCFA goblet cell count and architecture of intestinal villi. These adverse effects were reduced in birds fed PYCW and to a lesser extent YCWE, indicating protection against toxic assault. PYCW yielded better production performance and stimulated liver function, with higher response to NDV and IBV vaccination. Furthermore, mycotoxins were found to affect production outputs when evaluated with the European poultry production efficiency factor compared to control or YCWE and PYCW supplemented treatments. Taken together, YCWE, when complemented with nutritional add-ons (PYCW), could potentiate the remediation of the negative effects from a multi mycotoxins dietary challenge in broiler birds.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Pared Celular , Pollos , Masculino , Micotoxinas/toxicidad , Extractos Vegetales , Saccharomyces cerevisiae
3.
ACS Omega ; 6(45): 30260-30280, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34805659

RESUMEN

Alkaloid toxicities negatively impact livestock health and production. To assess alkaloid occurrences, adsorbent technologies may offer effective means to their extraction and isolation from a complex feed matrix. In this study, molecularly imprinted polymers (MIPs) were synthesized and evaluated for their specificity of binding to various ergot alkaloids. Co-polymers of styrene and hydroxyethyl methacrylate were synthesized in the absence or presence of an ergotamine (ETA) template, yielding non-imprinted polymer (NIP) and molecularly imprinted polymer (MIP), respectively. The influence of parameters such as pH, temperature, and initial concentration on the adsorption of ergot alkaloids was evaluated along with their application as solid phase extraction materials. Chemical and morphological properties were characterized. Adsorption was generally greater for MIP compared to NIP. Cross-reactivity with related alkaloids existed due to similarities in structure and functional groups and was dependent on the type and concentration of alkaloid and polymer type (alkaloid type × concentration × product; P < 0.05). The pH of the medium had no influence on the binding properties of polymers toward ETA within a pH range of 2-10. Binding was independent of temperature between 36 and 42 °C. When kinetics of adsorption were evaluated, the Langmuir isotherm had a better fit (R 2 > 0.95) to adsorption equilibrium data than the Freundlich equation. The maximum amounts adsorbed (Q o) from the Langmuir model were 8.68 and 7.55 µM/g for MIP and NIP, respectively. Fourier transform infrared, scanning and tandem electron microscopy, and Brunauer-Emmett-Teller analysis confirmed a highly porous MIP structure with a greater surface area compared to NIP. Binding characteristics evaluated with computational strategy using molecular docking experiments and in vitro in a complex media (rumen fluid) indicated a stronger ETA adsorption by the tested composition selected among other polymeric materials and affinity of MIP compared with NIP. This study suggested the possible utility of MIP as a solid phase extraction sorbent for applications in analytical chemistry or sensing devices tailored to track ergot alkaloid incidence and the fate of those alkaloids in complex ruminal digestive samples.

4.
Toxins (Basel) ; 12(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019707

RESUMEN

The chronic intake of naturally multi-mycotoxin contaminated feed by broilers with or without titers of Yeast Cell Wall Extract (YCWE, a.k.a Mycosorb A+®), was investigated. Day-old male Cobb chicks (1600 birds, 64 pens, 25 birds/pen) were randomly allocated to diets of control (CON); diet containing mycotoxins (MT); CON + 0.2% YCWE; MT + 0.025% YCWE; MT + 0.05% YCWE; MT + 0.1% YCWE; MT + 0.2% YCWE; and MT + 0.4% YCWE. Growth performance, blood biochemical parameters and gut health were recorded over 42 days. Compared with CON, MT had reduced body weight (BW) and increased feed conversion ratio (FCR) on days 35 and 42 with increased duodenal crypt depth and fewer goblet cells. Furthermore, European Poultry Production Efficiency (EPEF) was reduced for MT versus CON. Feeding MT + 0.2% YCWE improved BW, lowered FCR, reduced crypt depth, increased goblet cell count and improved EPEF. Considering titration of YCWE (0 to 0.4%) during mycotoxin challenge, a cubic effect was observed for FCR with NC + 0.2% YCWE having the lowest FCR. These findings suggest that chronic consumption of multiple Fusarium mycotoxins present in common field concentrations can negatively impact broiler performance and gut health while inclusion of YCWE, particularly 0.2%, could be effective in counteracting mycotoxins.


Asunto(s)
Alimentación Animal/microbiología , Pared Celular/metabolismo , Pollos/crecimiento & desarrollo , Suplementos Dietéticos , Microbiología de Alimentos , Fusarium/metabolismo , Micotoxinas/toxicidad , Levaduras/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Pollos/metabolismo , Tracto Gastrointestinal/crecimiento & desarrollo , Masculino , Micotoxinas/metabolismo , Aumento de Peso
5.
Toxins (Basel) ; 10(2)2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29385697

RESUMEN

Ergot alkaloids, in their active isomeric form, affect animal health and performance, and adsorbents are used to mitigate toxicities by reducing bioavailability. Adsorbents with high specificity (molecularly imprinted polymers: MIP) adsorb ergot alkaloids in vitro, but require evaluation for biological implications. Using ex vivo myography, synthetic polymers were evaluated for effects on the bioactivity of ergotamine tartrate (ETA). Polymers were first evaluated using isotherms. Lateral saphenous veins were collected from 17 steers for four independent studies: dose response of ETA, adsorbent dose response, validation of pre-myograph incubation conditions and MIP/ non-molecularly imprinted polymer (NIP) comparison. Norepinephrine normalized percent contractile response to increasing ETA exhibited a sigmoidal dose response (max: 88.47 and log of the effective molar concentration (EC50) (-log [ETA]) of 6.66 ± 0.17 M). Although sample preparation time affected contractile response (p < 0.001), pre-myograph incubation temperature (39 vs. 21 °C, 1 h) had no effect (p > 0.05). Isothermal adsorption showed a maximum adsorption of 3.27E-008 moles·mg-1 and affinity between 0.51 and 0.57 mg (R²: 0.83-0.92) for both polymers, with no significant difference between polymers (p > 0.05). No significant differences in maximum inhibitory (p = 0.96) and IC50 responses (p = 0.163) between MIP and NIP were noticed. Normalized percent contraction could be predicted from the in vitro adsorption data (R² = 0.87, p < 0.01), for both polymers. These studies indicate that synthetic polymers are potentially effective adsorbents to mitigate ergot toxicity caused by ergot alkaloids, with little evidence of significant differences between MIP and NIP in aqueous media.


Asunto(s)
Ergotamina/química , Ergotamina/toxicidad , Metacrilatos/química , Vena Safena/efectos de los fármacos , Vasoconstrictores/química , Vasoconstrictores/toxicidad , Adsorción , Animales , Bovinos , Técnicas In Vitro , Impresión Molecular , Vena Safena/fisiología
6.
Rapid Commun Mass Spectrom ; 26(23): 2697-713, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23124660

RESUMEN

RATIONALE: Mycotoxins are typically present in grain and are also concentrated in distillers dried grains with solubles (DDGS), common feed ingredients for food animals. The diversity of mycotoxins and feed matrices has made the routine detection and quantification of mycotoxins in feed both complex and prohibitively expensive. METHODS: Ultra-performance liquid chromatography/electrospray ionization triple quadrupole detection (UPLC/ESI-TQD) (tandem mass spectrometry, MS/MS) with (13) C-labeled isotopic dilution was used to analyze internal standard isotopologues of three mycotoxin molecules, as well as 29 other structurally differing mycotoxin molecules from four common feed matrices: corn, wheat, barley, or DDGS. Mycotoxins were extracted via a single-step procedure using a mixture of acetonitrile/water/formic acid. Labeled isotopologues were used as a surrogate to account for extraction quality and as internal standards for the evaluation of the feed matrix signal suppression/enhancement (SSE) contributed by each mycotoxin and by each matrix. The SSE was corrected by matrix-matched calibration with blank certified reference feed material. RESULTS: The limits of detection for individual mycotoxins in buffer ranged from 0.01 to 206.7 µg/mL but could increase by up to four times depending on the matrix effect. The accuracy and precision were enhanced by the use of isotopically labeled standards. The recoveries were somewhat negatively affected by the SSE contributed by each matrix. Each mycotoxin was successfully detected and assigned to one of four SSE categories: high (-66%), intermediate (-48%), low (-19%) signal suppression and signal enhancement (> +300%). CONCLUSIONS: An improved LC/MS method was validated, which offers a practical and economical means for large-scale detection and quantification of multiple mycotoxins in common animal-feed matrices, including DDGS.


Asunto(s)
Alimentación Animal/análisis , Alimentación Animal/microbiología , Micotoxinas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Grano Comestible/química , Grano Comestible/microbiología , Límite de Detección , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA