Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plants (Basel) ; 12(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447053

RESUMEN

Fruit development involves exocarp color evolution. However, signals that control this process are still elusive. Differences between dark-red and bicolored sweet cherry cultivars rely on MYB factor gene mutations. Color evolution in bicolored fruits only occurs on the face receiving sunlight, suggesting the perception or response to color-inducing signals is affected. These color differences may be related to synthesis, perception or response to abscisic acid (ABA), a phytohormone responsible for non-climacteric fruit coloring. This work aimed to determine the involvement of ABA in the coloring process of color-contrasting varieties. Several phenolic accumulation patterns differed between bicolored 'Royal Rainier' and dark-red 'Lapins'. Transcript abundance of ABA biosynthetic genes (PavPSY, PavZEP and PavNCED1) decreased dramatically from the Pink to Red stage in 'Royal Rainier' but increased in 'Lapins', which correlated with a higher ABA content in this dark-red cultivar. Transcripts coding for ABA signaling (PavPP2Cs, PavSnRKs and PavMYB44.1) were almost undetectable at the Red stage in 'Royal Rainier'. Field trials revealed that 'Royal Rainier' color development was insensitive to exogenous ABA, whereas it increased in 'Lapins'. Furthermore, ABA treatment only increased transcript levels of signaling genes in 'Lapins'. Further studies may address if the ABA pathway is attenuated in bicolor cultivars.

2.
J Agric Food Chem ; 69(31): 8850-8860, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339217

RESUMEN

Color acquisition is one of the most distinctive features of fruit development and ripening processes. The color red is closely related to the accumulation of polyphenolic compounds, mainly anthocyanins, during sweet cherry fruit maturity. In non-climacteric fruit species like sweet cherry, the maturity process is mainly controlled by the phytohormone abscisic acid (ABA), though other hormones may also play a role. However, the coordinated stage-specific production of polyphenolic compounds and their relation with hormone content variations have not been studied in depth in sweet cherry fruits. To further understand the accumulation dynamics of these compounds (hormones and metabolites) during fruit development, two sweet cherry cultivars ("Lapins" and "Glenred") with contrasting maturity timing phenotypes were analyzed using targeted metabolic analysis. The ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach revealed that phenolic acids, flavonols, and flavan-3-ols accumulated mainly until the straw-yellow stage in the early-maturing cultivar, while accumulation was mainly at the green stage in the mid-maturing cultivar, suggesting a cultivar-dependent stage-specific production of secondary metabolites. In the mid-maturing cultivar, anthocyanins were detected only from the red stage onward, whereas detection began at the pink stage in the early-maturing cultivar. ABA negatively correlated (p-value < 0.05) with the flavonols and flavan-3-ols in both cultivars. ABA and anthocyanin content increased at the same time in the early-season cultivar. In contrast, anthocyanins accumulated and the pink color initiation started several days after the ABA increase in the mid-maturing cultivar. Differential accumulation patterns of GA4, a ripening antagonizing hormone, between the cultivars could explain this difference. These results showed that both red-colored cultivars presented different accumulation dynamics of phenolic compounds and plant hormones during fruit development, suggesting underlying differences in the sweet cherry fruit color evolution.


Asunto(s)
Prunus avium , Antocianinas , Frutas , Hormonas , Espectrometría de Masas en Tándem
3.
Hortic Res ; 8(1): 140, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127649

RESUMEN

Auxin is a key phytohormone that modulates fruit formation in many fleshy fruits through the regulation of cell division and expansion. Auxin content rapidly increases after pollination and the manipulation in its levels may lead to the parthenocarpic development. ln Vitis vinifera L., little is known about the early fruit development that encompasses from pollination to fruit set. Pollination/fertilization events trigger fruit formation, and auxin treatment mimics their effect in grape berry set. However, the role of auxin in this process at the molecular level is not well understood. To elucidate the participation of auxin in grapevine fruit formation, morphological, reproductive, and molecular events from anthesis to fruit set were described in sequential days after pollination. Exploratory RNA-seq analysis at four time points from anthesis to fruit set revealed that the highest percentage of genes induced/repressed within the hormone-related gene category were auxin-related genes. Transcript profiling showed significant transcript variations in auxin signaling and homeostasis-related genes during the early fruit development. Indole acetic acid and several auxin metabolites were present during this period. Finally, application of an inhibitor of auxin action reduced cell number and the mesocarp diameter, similarly to unpollinated berries, further confirming the key role of auxin during early berry development. This work sheds light into the molecular features of the initial fruit development and highlights the auxin participation during this stage in grapevine.

4.
Sci Rep ; 11(1): 13075, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158527

RESUMEN

Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA3), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (Prunus avium L.), though causing different effects depending on the variety. Recently, we reported that GA3 delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA3 did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA3 applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA3 produced fruits with less color in both varieties. Similar to our previous report, GA3 delayed fruit color initiation and IAD only in the mid-season variety and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control- and GA3-treated fruits revealed that ripening-related categories were overrepresented in the early-season variety, including 'photosynthesis' and 'auxin response'. GA3 also changed the expression of carotenoid and abscisic acid (ABA) biosynthetic genes in this variety. In contrast, overrepresented categories in the mid-season variety were mainly related to metabolic processes. In this variety, some PP2Cs putative genes were positively regulated by GA3, which are negative regulators of ABA responses, and MYB44-like genes (putative repressors of PP2Cs expression) were downregulated. These results show that GA3 differentially modulates the transcriptome at the onset of ripening in a variety-dependent manner and suggest that GA3 impairs ripening through the modification of ripening associated gene expression only in the early-season variety; whereas in the mid-season variety, control of the ripening timing may occur through the PP2C gene expression regulation. This work contributes to the understanding of the role of GA in non-climacteric fruit ripening.


Asunto(s)
Giberelinas/metabolismo , Prunus avium/genética , Agricultura/métodos , Antocianinas/metabolismo , Secuencia de Bases/genética , Frutas/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/farmacología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Prunus avium/metabolismo , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Transcriptoma/genética
5.
Plants (Basel) ; 9(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352825

RESUMEN

Several phytohormones modulate ripening in non-climacteric fruits, which is triggered by abscisic acid (ABA). Gibberellins (GAs) are present during the onset of ripening in sweet cherry fruits, and exogenous gibberellic acid (GA3) application delays ripening, though this effect is variety-dependent. Although an ABA accumulation delay has been reported following GA3 treatment, the mechanism by which GA modulates this process has not been investigated at the molecular level in sweet cherry. Therefore, the aim of this work is to analyze the effect of GA3 on the fruit ripening process and the transcript levels of ABA pathway orthologs in two varieties having different maturity time phenotypes. The early-season variety had a rapid transition from yellow to pink fruit color, whereas pink color initiation took longer in the mid-season variety. GA3 increased the proportion of lighter colored fruits at ripeness in both varieties, but it produced a delay in IAD-a ripening index-only in the mid-season variety. This delay was accompanied by an increased transcript abundance of PavPP2Cs, which are putative negative regulators of the ABA pathway. On the other hand, the early-season variety had increased expression of PavCYP707A2-a putative ABA catabolic gene-, and reduced transcript levels of PavPP2Cs and SnRK2s after the GA3 treatment. Together these results show that GA modulates fruit ripening, exerting its action in part by interacting with the ABA pathway in sweet cherry.

6.
BMC Plant Biol ; 16(1): 234, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27793088

RESUMEN

BACKGROUND: Indole-3-acetic acid (IAA), the most abundant auxin, is a growth promoter hormone involved in several developmental processes. Auxin homeostasis is very important to its function and this is achieved through the regulation of IAA biosynthesis, conjugation, degradation and transport. In grapevine, IAA plays an essential role during initial stages of berry development, since it delays fruitlet abscission by reducing the ethylene sensitivity in the abscission zone. For this reason, Continuous polar IAA transport to the pedicel is required. This kind of transport is controlled by IAA, which regulates its own movement by modifying the expression and localization of PIN-FORMED (PIN) auxin efflux facilitators that localize asymmetrically within the cell. On the other hand, the hormone gibberellin (GA) also activates the polar auxin transport by increasing PIN stability. In Vitis vinifera, fruitlet abscission occurs during the first two to three weeks after flowering. During this time, IAA and GA are present, however the role of these hormones in the control of polar auxin transport is unknown. RESULTS: In this work, the use of radiolabeled IAA showed that auxin is basipetally transported during grapevine fruitlet abscission. This observation was further supported by immunolocalization of putative VvPIN proteins that display a basipetal distribution in pericarp cells. Polar auxin transport and transcripts of four putative VvPIN genes decreased in conjunction with increased abscission, and the inhibition of polar auxin transport resulted in fruit drop. GA3 and IAA treatments reduced polar auxin transport, but only GA3 treatment decreased VvPIN transcript abundance. When GA biosynthesis was blocked, IAA was capable to increase polar auxin transport, suggesting that its effect depends on GA content. Finally, we observed significant changes in the content of several IAA-related compounds during the abscission period. CONCLUSIONS: These results provide evidence that auxin homeostasis plays a central role during grapevine initial fruit development and that GA and IAA controls auxin homeostasis by reducing polar auxin transport.


Asunto(s)
Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas de Plantas/genética , Vitis/genética , Vitis/crecimiento & desarrollo
7.
PLoS One ; 9(11): e111258, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25365421

RESUMEN

In grapevine, fruit abscission is known to occur within the first two to three weeks after flowering, but the reason why some berries in a cluster persist and others abscise is not yet understood. Ethylene sensitivity modulates abscission in several fruit species, based on a mechanism where continuous polar auxin transport across the pedicel results in a decrease in ethylene perception, which prevents abscission. In grapevine, flowering takes about four to seven days in a single cluster, thus while some flowers are developing into berries, others are just starting to open. So, in this work it was assessed whether uneven flowering accounted for differences in berry abscission dependent on polar auxin transport and ethylene-related gene expression. For this, flowers that opened in a cluster were tagged daily, which allowed to separately analyze berries, regarding their ability to persist. It was found that berries derived from flowers that opened the day that flowering started--named as "first berries"--had lower abscission rate than berries derived from flowers that opened during the following days--named as "late berries". Use of radiolabeled auxin showed that "first berries" had higher polar auxin transport, correlated with lower ethylene content and lower ethylene-related transcript abundance than "late berries". When "first berries" were treated with a polar auxin transport inhibitor they showed higher ethylene-related transcript abundance and were more prone to abscise than control berries. This study provides new insights on fruit abscission control. Our results indicate that polar auxin transport sustains the ability of "first berries" to persist in the cluster during grapevine abscission and also suggest that this could be associated with changes in ethylene-related gene expression.


Asunto(s)
Etilenos/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Vitis/genética , Vitis/metabolismo , Transporte Biológico , Fenotipo , Transcripción Genética
8.
J Exp Bot ; 65(16): 4543-59, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24285825

RESUMEN

Grapevine (Vitis vinifera L.) is a non-climacteric fruit species used as table fruit, dried raisins, and for vinification (wines) and distillation (liquors). In recent years, our knowledge of the molecular basis of ripening regulation has improved. Water status, light conditions, and temperature may hasten, delay, or enhance ripening. Hormones seem to play a central role, as their concentrations change prior to and during ripening and in response to several environmental cues. The review summarizes recent data related to the molecular and hormonal control of grape berry development and ripening, with special emphasis on secondary metabolism and its response to the environment, and pinpoints some experimental limitations.


Asunto(s)
Frutas/crecimiento & desarrollo , Vitis/crecimiento & desarrollo , Vías Biosintéticas/efectos de los fármacos , Ambiente , Frutas/efectos de los fármacos , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Vitis/efectos de los fármacos , Vitis/metabolismo
9.
Plant Signal Behav ; 7(1): 7-11, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22301957

RESUMEN

Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present unpublished results showing how quickly this effect is achieved.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Polinización , Vitis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Vitis/crecimiento & desarrollo
10.
Plant Signal Behav ; 4(7): 614-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19820336

RESUMEN

Light signals perceived by phytochromes (Phys) and cryptochromes (Crys) play key roles in plant growth and development and in photoperiod dependant process such as flowering, tuberization, seasonal growth cessation and dormancy. The integration of the light signals with the endogenous circadian oscillator provides plants with a mechanism to monitor changes in photoperiod or day-length. In a recent report, we established that in Vitis vinifera L. cv Thompson Seedless, photoperiod drives the entrance of buds into endodormancy (ED) and modifies the expression of VvPHYA and VvPHYB transcripts in grapevine leaves, suggesting that both VvPHYs could play crucial roles in SD-induced transition of bud into ED. Here, we aimed to establish whether the transition of grapevine buds into ED is a mere consequence of a decision taken in the leaf or whether the bud responds by itself to photoperiod. Results show that in defoliated grapevine canes, bud-ED development is delayed compared with non-defoliated control canes, and that under LD-photoperiod both VvPHYA and VvPHYB transcripts are highly expressed in grapevine buds, whilst under SD-photoperiod both VvPHYs are downregulated and expression can not be detected. Overall, the results suggest that grapevine bud behaves as semi-autonomous organ in sensing the photoperiod signal, and that VvPHYA and VvPHYB gene expression is differently regulated by photoperiod in leaf and bud of grapevines.

11.
J Plant Physiol ; 166(11): 1172-80, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19232775

RESUMEN

Despite the crucial role that phytochromes (Phys) play in light perception and in the entrainment of the circadian clock to local time, the photoperiodic regulation of PHYA and PHYB gene expression has been poorly studied, especially in woody perennials. Here the dynamic of Vitis vinifera PHYA (VvPHYA) and PHYB (VvPHYB) transcript accumulation was studied in field-grown grapevine leaves throughout daily cycles under decreasing natural photoperiods. Given that in grapevine the entrance of buds into endodormancy (ED) is a photoperiod-driven process, increases in BR(50) values, a parameter that measures the depth of dormancy in single bud cuttings assays was used to determine the critical daylength at which grapevine discriminates between long day (LD) and short day (SD) photoperiod. Therefore, we monitored the daily expression profile of VvPHYA and VvPHYB transcripts before, during and after the defined critical daylength. Results showed that under LD photoperiod (21 December, daylength 14 h 40 min) the abundance of both transcripts oscillated with diurnal rhythms, attaining maximum and minimum levels before dawn and after dusk, respectively. However, under SD photoperiod (12 April, daylength 11 h 40 min) the rhythmic expression disappeared, and both transcripts expressed uniformly at high levels. Our results showing that photoperiod regulates VvPHYA and VvPHYB gene expression, contrast with those reported in Arabidopsis and in other herbaceous plants in which PHYA and PHYB gene expression is regulated by the circadian clock.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Fitocromo/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Vitis/genética , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fitocromo/genética , Hojas de la Planta/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vitis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA