Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Elife ; 122024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808578

RESUMEN

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.


Asunto(s)
Neoplasias de la Mama , Humanos , Animales , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Mitocondrias/metabolismo , Mitocondrias/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Membranas Mitocondriales/metabolismo , Femenino , Metabolismo Energético
2.
Mitochondrion ; 76: 101880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604459

RESUMEN

Plasma membrane large-conductance calcium-activated potassium (BKCa) channels are important players in various physiological processes, including those mediated by epithelia. Like other cell types, human bronchial epithelial (HBE) cells also express BKCa in the inner mitochondrial membrane (mitoBKCa). The genetic relationships between these mitochondrial and plasma membrane channels and the precise role of mitoBKCa in epithelium physiology are still unclear. Here, we tested the hypothesis that the mitoBKCa channel is encoded by the same gene as the plasma membrane BKCa channel in HBE cells. We also examined the impact of channel loss on the basic function of HBE cells, which is to create a tight barrier. For this purpose, we used CRISPR/Cas9 technology in 16HBE14o- cells to disrupt the KCNMA1 gene, which encodes the α-subunit responsible for forming the pore of the plasma membrane BKCa channel. Electrophysiological experiments demonstrated that the disruption of the KCNMA1 gene resulted in the loss of BKCa-type channels in the plasma membrane and mitochondria. We have also shown that HBE ΔαBKCa cells exhibited a significant decrease in transepithelial electrical resistance which indicates a loss of tightness of the barrier created by these cells. We have also observed a decrease in mitochondrial respiration, which indicates a significant impairment of these organelles. In conclusion, our findings indicate that a single gene encodes both populations of the channel in HBE cells. Furthermore, this channel is critical for maintaining the proper function of epithelial cells as a cellular barrier.


Asunto(s)
Bronquios , Células Epiteliales , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Bronquios/metabolismo , Bronquios/citología , Células Epiteliales/metabolismo , Línea Celular , Mitocondrias/metabolismo , Sistemas CRISPR-Cas , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/citología , Membrana Celular/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología
3.
Mech Ageing Dev ; 215: 111871, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689317

RESUMEN

A limited number of studies have shown functional changes in mitochondrial ion channels in aging and senescent cells. We have identified, for the first time, mitochondrial large-conductance calcium-regulated potassium channels in human smooth muscle mitochondria. This channel, with a conductance of 273 pS, was regulated by calcium ions and membrane potential. Additionally, it was activated by the potassium channel opener NS11021 and blocked by paxilline. Importantly, we have shown that senescence of these cells induced by hydrogen peroxide treatment leads to the disappearance of potassium channel protein levels and channel activity measured by the single channel patch-clamp technique. Our data suggest that disturbances in the expression of mitochondrial large conductance calcium-regulated potassium channels may be hallmarks of cellular senescence and contribute to the misregulation of mitochondrial function in senescent cells.


Asunto(s)
Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Humanos , Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Potasio/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo
4.
Pflugers Arch ; 475(9): 1045-1060, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401985

RESUMEN

Mitochondrial potassium (mitoK) channels play an important role in cellular physiology. These channels are expressed in healthy tissues and cancer cells. Activation of mitoK channels can protect neurons and cardiac tissue against injury induced by ischemia-reperfusion. In cancer cells, inhibition of mitoK channels leads to an increase in mitochondrial reactive oxygen species, which leads to cell death. In glioma cell activity of the mitochondrial, large conductance calcium-activated potassium (mitoBKCa) channel is regulated by the mitochondrial respiratory chain. In our project, we used CRISPR/Cas9 technology in human glioblastoma U-87 MG cells to generate knockout cell lines lacking the α-subunit of the BKCa channel encoded by the KCNMA1 gene, which also encodes cardiac mitoBKCa. Mitochondrial patch-clamp experiments showed the absence of an active mitoBKCa channel in knockout cells. Additionally, the absence of this channel resulted in increased levels of mitochondrial reactive oxygen species. However, analysis of the mitochondrial respiration rate did not show significant changes in oxygen consumption in the cell lines lacking BKCa channels compared to the wild-type U-87 MG cell line. These observations were reflected in the expression levels of selected mitochondrial genes, organization of the respiratory chain, and mitochondrial morphology, which did not show significant differences between the analyzed cell lines. In conclusion, we show that in U-87 MG cells, the pore-forming subunit of the mitoBKCa channel is encoded by the KCNMA1 gene. Additionally, the presence of this channel is important for the regulation of reactive oxygen species levels in mitochondria.


Asunto(s)
Glioblastoma , Canales de Potasio de Gran Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glioblastoma/metabolismo , Mitocondrias/metabolismo , Potasio/metabolismo , Calcio/metabolismo
5.
Membranes (Basel) ; 13(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984747

RESUMEN

In the inner mitochondrial membrane, several potassium channels that play a role in cell life and death have been identified. One of these channels is the ATP-regulated potassium channel (mitoKATP). The ROMK2 potassium channel is a potential molecular component of the mitoKATP channel. The current study aimed to investigate the pharmacological modulation of the activity of the ROMK2 potassium channel expressed in Escherichia coli bacteria. ROMK2 was solubilized in polymer nanodiscs and incorporated in planar lipid bilayers. The impact of known mitoKATP channel modulators on the activity of the ROMK2 was characterized. We found that the ROMK2 channel was activated by the mitoKATP channel opener diazoxide and blocked by mitoKATP inhibitors such as ATP/Mg2+, 5-hydroxydecanoic acid, and antidiabetic sulfonylurea glibenclamide. These results indicate that the ROMK2 potassium protein may be a pore-forming subunit of mitoKATP and that the impact of channel modulators is not related to the presence of accessory proteins.

6.
Nature ; 614(7946): 153-159, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697829

RESUMEN

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Asunto(s)
Proteínas Fúngicas , Mitocondrias , Proteínas Mitocondriales , Transporte de Proteínas , Proteoma , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Respiración de la Célula , Ribosomas , Conjuntos de Datos como Asunto
7.
Front Physiol ; 13: 907015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711307

RESUMEN

In this paper, the current challenges of mitochondrial potassium channels research were critically reviewed. Even though recent progress in understanding K+ traffic in mitochondria has been substantial, some basic issues of this process remain unresolved. Here, we focused on the critical discussion of the molecular identity of various mitochondrial potassium channels. This point helps to clarify why there are different potassium channels in specific mitochondria. We also described interactions of mitochondrial potassium channel subunits with other mitochondrial proteins. Posttranslational modifications of mitochondrial potassium channels and their import are essential but unexplored research areas. Additionally, problems with the pharmacological targeting of mitochondrial potassium channel were illustrated. Finally, the limitation of the techniques used to measure mitochondrial potassium channels was explained. We believe that recognizing these problems may be interesting for readers but will also help to progress the field of mitochondrial potassium channels.

8.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011530

RESUMEN

Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Humanos , Potasio/metabolismo , Canales de Potasio/clasificación
9.
Cells ; 10(6)2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205420

RESUMEN

Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Canales de Potasio/metabolismo , Animales , Humanos , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología
10.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072205

RESUMEN

Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary ß3-ß4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately ß3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.


Asunto(s)
Bronquios/metabolismo , Calcio/metabolismo , Células Epiteliales/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Consumo de Oxígeno , Potasio/metabolismo , Biofisica , Supervivencia Celular , Electrofisiología , Metabolismo Energético , Epitelio/metabolismo , Humanos , Indoles/química , Potencial de la Membrana Mitocondrial , Potenciales de la Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Técnicas de Placa-Clamp , Péptidos/química , Dominios Proteicos
11.
Sci Rep ; 11(1): 10925, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035423

RESUMEN

The activation of mitochondrial large conductance calcium-activated potassium (mitoBKCa) channels increases cell survival during ischemia/reperfusion injury of cardiac cells. The basic biophysical and pharmacological properties of mitoBKCa correspond to the properties of the BKCa channels from the plasma membrane. It has been suggested that the VEDEC splice variant of the KCNMA1 gene product encoding plasma membrane BKCa is targeted toward mitochondria. However there has been no direct evidence that this protein forms a functional channel in mitochondria. In our study, we used HEK293T cells to express the VEDEC splice variant and observed channel activity in mitochondria using the mitoplast patch-clamp technique. For the first time, we found that transient expression with the VEDEC isoform resulted in channel activity with the conductance of 290 ± 3 pS. The channel was voltage-dependent and activated by calcium ions. Moreover, the activity of the channel was stimulated by the potassium channel opener NS11021 and inhibited by hemin and paxilline, which are known BKCa channel blockers. Immunofluorescence experiments confirmed the partial colocalization of the channel within the mitochondria. From these results, we conclude that the VEDEC isoform of the BKCa channel forms a functional channel in the inner mitochondrial membrane. Additionally, our data show that HEK293T cells are a promising experimental model for expression and electrophysiological studies of mitochondrial potassium channels.


Asunto(s)
Empalme Alternativo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Mitocondrias/metabolismo , Calcio/metabolismo , Células HEK293 , Humanos , Membranas Mitocondriales/metabolismo , Técnicas de Placa-Clamp , Isoformas de Proteínas/metabolismo
12.
Biochemistry (Mosc) ; 86(1): 33-43, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33705280

RESUMEN

In this work we studied molecular and functional effects of the loss of the smallest nuclear encoded subunit of cytochrome c oxidase COX8A in fibroblasts from a patient with a homozygous splice site mutation and in CRISPR/Cas9 genome-edited HEK293T cells. In both cellular model systems, between 20 to 30% of the residual enzymatic activity of cytochrome c oxidase (COX) was detectable. In immunoblots of BN-PAGE separated mitochondria from both cellular models almost no monomers and dimers of the fully assembled COX could be visualized. Interestingly, supercomplexes of COX formed with complex III and also with complexes I and III retained considerable immunoreactivity, while nearly no immunoreactivity attributable to subassemblies was found. That indicates that COX lacking subunit 8A is stabilized in supercomplexes, while monomers and dimers are rapidly degraded. With transcriptome analysis by 3'-RNA sequencing we failed to detect in our cellular models of COX8A deficiency transcriptional changes of genes involved in the mitochondrial unfolded protein response (mtUPR) and the integrated stress response (ISR). Thus, our data strongly suggest that the smallest subunit of cytochrome c oxidase COX8A is required for maintenance of the structural stability of COX monomers and dimers.


Asunto(s)
Transporte de Electrón/genética , Mitocondrias/enzimología , Mutación , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada
13.
Int J Biochem Cell Biol ; 125: 105792, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32574707

RESUMEN

In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canales de Potasio/metabolismo , Transducción de Señal/genética , Adenosina Trifosfato , Animales , Calcio/metabolismo , Humanos , Oxidación-Reducción , Canales de Potasio/efectos de los fármacos , Canales de Potasio Calcio-Activados/efectos de los fármacos , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio de Dominio Poro en Tándem/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
Eur J Pharmacol ; 881: 173191, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32422186

RESUMEN

Carbon monoxide (CO) is an endogenously synthesized gaseous mediator and is involved in the regulation of numerous physiological processes. Mitochondria, in which hemoproteins are abundant, are among the targets for CO action. Large-conductance calcium-activated (mitoBKCa) channels in the inner mitochondrial membrane share multiple biophysical similarities with the BKCa channels of the plasma membrane and could be a potential target for CO. To test this hypothesis, the activity of the mitoBKCa channels in human astrocytoma U-87 MG cell mitochondria was assessed with the patch-clamp technique. The effects of CO-releasing molecules (CORMs), such as CORM-2, CORM-401, and CORM-A1, were compared to the application of a CO-saturated solution to the mitoBKCa channels in membrane patches. The applied CORMs showed pleiotropic effects including channel inhibition, while the CO-containing solution did not significantly modulate channel activity. Interestingly, CO applied to the mitoBKCa channels, which were inhibited by exogenously added heme, stimulated the channel. To summarize, our findings indicate a requirement of heme binding to the mitoBKCa channel for channel modulation by CO and suggest that CORMs might have complex unspecific effects on mitoBKCa channels.


Asunto(s)
Boranos/farmacología , Monóxido de Carbono/farmacología , Carbonatos/farmacología , Hemo/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Glicinas N-Sustituídas/farmacología , Compuestos Organometálicos/farmacología , Boranos/metabolismo , Monóxido de Carbono/metabolismo , Carbonatos/metabolismo , Línea Celular Tumoral , Hemo/metabolismo , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Potenciales de la Membrana , Mitocondrias/metabolismo , Glicinas N-Sustituídas/metabolismo , Compuestos Organometálicos/metabolismo , Unión Proteica
15.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731540

RESUMEN

An increased flux of potassium ions into the mitochondrial matrix through the ATP-sensitive potassium channel (mitoKATP) has been shown to provide protection against ischemia-reperfusion injury. Recently, it was proposed that the mitochondrial-targeted isoform of the renal outer medullary potassium channel (ROMK) protein creates a pore-forming subunit of mitoKATP in heart mitochondria. Our research focuses on the properties of mitoKATP from heart-derived H9c2 cells. For the first time, we detected single-channel activity and describe the pharmacology of mitoKATP in the H9c2 heart-derived cells. The patch-clamping of mitoplasts from wild type (WT) and cells overexpressing ROMK2 revealed the existence of a potassium channel that exhibits the same basic properties previously attributed to mitoKATP. ROMK2 overexpression resulted in a significant increase of mitoKATP activity. The conductance of both channels in symmetric 150/150 mM KCl was around 97 ± 2 pS in WT cells and 94 ± 3 pS in cells overexpressing ROMK2. The channels were inhibited by 5-hydroxydecanoic acid (a mitoKATP inhibitor) and by Tertiapin Q (an inhibitor of both the ROMK-type channels and mitoKATP). Additionally, mitoKATP from cells overexpressing ROMK2 were inhibited by ATP/Mg2+ and activated by diazoxide. We used an assay based on proteinase K to examine the topology of the channel in the inner mitochondrial membrane and found that both termini of the protein localized to the mitochondrial matrix. We conclude that the observed activity of the channel formed by the ROMK protein corresponds to the electrophysiological and pharmacological properties of mitoKATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Magnesio/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/genética , Línea Celular , Humanos , Proteínas Mitocondriales/genética , Canales de Potasio de Rectificación Interna/genética
16.
Biochim Biophys Acta Bioenerg ; 1859(9): 797-805, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29775559

RESUMEN

Potassium channels have been discovered in the inner mitochondrial membrane of various cells. These channels can regulate the mitochondrial membrane potential, the matrix volume, respiration and reactive species generation. Therefore, it is believed that their activation is cytoprotective in various tissues. In our study, the single-channel activity of a large-conductance calcium-activated potassium channel (mitoBKCa) was measured by the patch-clamp technique on mitoplasts derived from mitochondria isolated from human glioma U-87 MG cells. Here, we show for the first time that mechanical stimulation of mitoBKCa channels results in an increased probability of channel opening. However, the mechanosensitivity of mitoBKCa channels was variable with some channels exhibiting no mechanosensitivity. We detected the expression of mechanosensitive BKCa-STREX exon in U-87 MG cells and hypotesize, based on previous studies demonstrating the presence of multiple BKCa splice variants that variable mechanosensitivity of mitoBKCa could be the result of the presence of diverse BKCa isoforms in mitochondria of U-87 MG cells. Our findings indicate the possible involvement of the mitoBKCa channel in mitochondria activities in which changes in membrane tension and shape play a crucial role, such as fusion/fission and cristae remodeling.


Asunto(s)
Calcio/metabolismo , Glioma/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Mecanotransducción Celular , Mitocondrias/metabolismo , Glioma/patología , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Potencial de la Membrana Mitocondrial , Mutación , Técnicas de Placa-Clamp , Células Tumorales Cultivadas
17.
Biochim Biophys Acta Bioenerg ; 1859(5): 309-318, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29458000

RESUMEN

Mitochondrial ATP-regulated potassium channels are present in the inner membrane of the mitochondria of various cells. In the present study, we show for the first time mitochondrial ATP-regulated potassium channels in human dermal fibroblast cells. Using the patch-clamp technique on the inner mitochondrial membrane of fibroblasts, we detected a potassium channel with a mean conductance equal to 100 pS in symmetric 150 mM KCl. The activity of this channel was inhibited by a complex of ATP/Mg2+ and activated by potassium channel openers such as diazoxide or BMS 191095. Channel activity was inhibited by antidiabetic sulfonylurea glibenclamide and 5-hydroxydecanoic acid. The influence of substances modulating ATP-regulated potassium channel activity on oxygen consumption and membrane potential of isolated fibroblast mitochondria was also studied. Additionally, the potassium channel opener diazoxide lowered the amount of superoxide formed in isolated fibroblast mitochondria. Using reverse transcriptase-PCR, we found an mRNA transcript for the KCNJ1(ROMK) channel. The presence of ROMK protein was observed in the inner mitochondrial membrane fraction. Moreover, colocalization of the ROMK protein and a mitochondrial marker in the mitochondria of fibroblast cells was shown by immunofluorescence. In summary, the ATP-regulated mitochondrial potassium channel in a dermal fibroblast cell line have been identified.


Asunto(s)
Dermis/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Línea Celular , Dermis/citología , Fibroblastos/citología , Humanos , Mitocondrias/genética , Canales de Potasio de Rectificación Interna/genética
18.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370072

RESUMEN

Potassium channel openers (KCOs) have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa) channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases). The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.


Asunto(s)
Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Moduladores del Transporte de Membrana/farmacología , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Calpaína/metabolismo , Línea Celular Tumoral , Humanos , Indoles/toxicidad , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Masculino , Moduladores del Transporte de Membrana/toxicidad , Proteínas Mitocondriales/agonistas , Ratas , Ratas Wistar
19.
Postepy Biochem ; 64(3): 196-212, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30656905

RESUMEN

Mitochondria play a fundamental role in ATP synthesis within the majority of mammalian cells. Potassium channels present in the inner mitochondrial membrane are fine regulators of mitochondrial function, based on inner membrane K+ permeability. These channels are regulated by a plethora of factors and conditions in a way similar to plasma membrane potassium channels. Regulators of mitochondrial potassium channels include the membrane potential, calcium ions, free fatty acids and ATP levels within the cells. Recently, it was shown that these channels are regulated by the respiratory chain, stretching of the membrane and phosphorylation. The essential interest that has driven studies of mitochondrial potassium channels for nearly 25 years is their role in cytoprotection and in cell death. Mitochondrial potassium channels have been described in neurons, astrocytoma, cardiac and skeletal muscles, fibroblasts, keratinocytes and endothelial cells. In this overview, we summarize the current knowledge of mitochondrial potassium channels. This summary will be done with a special focus on studies performed over the last 20 years in the Laboratory of Intracellular Ion Channels at the Nencki Institute. These include studies on the electrophysiological and pharmacological properties of mitochondrial potassium channels and on their regulation by endogenous intracellular substances. Additionally, the regulation of mitochondrial potassium channels by the respiratory chain and by stretching of the inner mitochondrial membrane will be reviewed. Properties of mitochondrial potassium channels in various organisms will also be summarized.


Asunto(s)
Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Animales , Transporte de Electrón , Membranas Intracelulares/metabolismo , Canales de Potasio/química
20.
Biochem J ; 473(23): 4457-4471, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729542

RESUMEN

Potassium channels have been found in the inner mitochondrial membrane of various cells. These channels regulate the mitochondrial membrane potential, respiration and production of reactive oxygen species. In the present study, we identified the activity of a mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) in mitoplasts isolated from a primary human dermal fibroblast cell line. A potassium selective current was recorded with a mean conductance of 280 ± 2 pS in a symmetrical 150 mM KCl solution. The mitoBKCa channel was activated by the Ca2+ and by potassium channel opener NS1619. The channel activity was irreversibly inhibited by paxilline, a selective inhibitor of the BKCa channels. In isolated fibroblast mitochondria NS1619 depolarized the mitochondrial membrane potential, stimulated nonphosphorylating respiration and decreased superoxide formation. Additionally, the α- and ß-subunits (predominantly the ß3-form) of the BKCa channels were identified in fibroblast mitochondria. Our findings indicate, for the first time, the presence of a large-conductance Ca2+-regulated potassium channel in the inner mitochondrial membrane of human dermal fibroblasts.


Asunto(s)
Fibroblastos/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Mitocondrias/metabolismo , Piel/citología , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Potencial de la Membrana Mitocondrial/fisiología , Técnicas de Placa-Clamp , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA