Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nutrients ; 14(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364909

RESUMEN

The present study investigated the effects of α-bisabolol on DOX-induced testicular damage in rats. Testicular damage was induced in rats by injecting DOX (12.5 mg/kg, i.p., single dose) into rats. α-Bisabolol (25 mg/kg, i.p.) was administered to the rats along with DOX pre- and co-treatment daily for a period of 5 days. DOX-injected rats showed a decrease in absolute testicular weight and relative testicular weight ratio along with concomitant changes in the levels/expression levels of oxidative stress markers and Nrf2 expression levels in the testis. DOX injection also triggered the activation of NF-κB/MAPK signaling and increased levels/expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and inflammatory mediators (iNOS and COX-2) in the testis. DOX triggered apoptosis, manifested by an increment in the expression levels of pro-apoptotic markers (Bax, Bcl2, cleaved caspase-3 and -9, and cytochrome-C) and a decline in the expression levels of anti-apoptotic markers (Bcl-xL and Bcl2) in the testis. Additionally, light microscopy revealed the changes in testicular architecture. α-Bisabolol rescued alterations in the testicular weight; restored all biochemical markers; modulated the expression levels of Nrf2-mediated antioxidant responses, NF-κB/MAPK signaling, endoplasmic reticulum (ER) stress, and apoptosis markers in DOX-injected testicular toxicity in rats. Based on our findings, it can be concluded that α-bisabolol has the potential to attenuate DOX-induced testicular injury by modifying NF-κB/MAPK signaling and the ER-stress-mediated mitochondrial pathway of apoptosis by invoking Nrf2-dependent antioxidant defense systems in rats. Based on the findings of the present study, α-bisabolol could be suggested for use as an agent or adjuvant with chemotherapeutic drugs to attenuate their deleterious effects of DOX on many organs including the testis. However, further regulatory toxicology and preclinical studies are necessary before making recommendations in clinical tests.


Asunto(s)
Antioxidantes , FN-kappa B , Animales , Masculino , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Doxorrubicina/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Testículo , Sistema de Señalización de MAP Quinasas , Estrés del Retículo Endoplásmico
2.
J Adv Res ; 38: 223-244, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35572407

RESUMEN

Background: Recent research on the implications of gut microbiota on brain functions has helped to gather important information on the relationship between them. Pathogenesis of neurological disorders is found to be associated with dysregulation of gut-brain axis. Some gut bacteria metabolites are found to be directly associated with the increase in reactive oxygen species levels, one of the most important risk factors of neurodegeneration. Besides their morbid association, gut bacteria metabolites are also found to play a significant role in reducing the onset of these life-threatening brain disorders. Aim of Review: Studies done in the recent past raises two most important link between gut microbiota and the brain: "gut microbiota-oxidative stress-neurodegeneration" and gut microbiota-antioxidant-neuroprotection. This review aims to gives a deep insight to our readers, of the collective studies done, focusing on the gut microbiota mediated oxidative stress involved in neurodegeneration along with a focus on those studies showing the involvement of gut microbiota and their metabolites in neuroprotection. Key Scientific Concepts of Review: This review is focused on three main key concepts. Firstly, the mounting evidences from clinical and preclinical arenas shows the influence of gut microbiota mediated oxidative stress resulting in dysfunctional neurological processes. Therefore, we describe the potential role of gut microbiota influencing the vulnerability of brain to oxidative stress, and a budding causative in Alzheimer's and Parkinson's disease. Secondly, contributing roles of gut microbiota has been observed in attenuating oxidative stress and inflammation via its own metabolites or by producing secondary metabolites and, also modulation in gut microbiota population with antioxidative and anti-inflammatory probiotics have shown promising neuro resilience. Thirdly, high throughput in silico tools and databases also gives a correlation of gut microbiome, their metabolites and brain health, thus providing fascinating perspective and promising new avenues for therapeutic options.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Antioxidantes/metabolismo , Bacterias/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Microbioma Gastrointestinal/fisiología , Neuroprotección , Estrés Oxidativo
3.
Mater Lett ; 308: 131237, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34776564

RESUMEN

COVID-19 pandemic has left a catastrophic effect on the world economy and human civilization. As an effective step towards controlling the transmission of viral infections during multiple waves of COVID-19, there is an urgent need to develop robust nanobiosensors for the detection of SARS-CoV-2 with high sensitivity, specificity, and fast analysis. Aptameric nanobiosensors are rapid and sensitive diagnostic platforms, capable of SARS-CoV-2 detection, which overcomes the limitations of the conventional techniques. This review article presents an outline of the aptameric nanobiosensors established for improved diagnosis of SARS-CoV-2 and the future perspectives are also covered.

4.
Assay Drug Dev Technol ; 19(4): 246-261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989048

RESUMEN

Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.


Asunto(s)
Fenofibrato/administración & dosificación , Hipolipemiantes/administración & dosificación , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Coloides , Composición de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Emulsiones , Fenofibrato/química , Hipolipemiantes/química , Microscopía Electrónica de Transmisión , Nanopartículas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA