Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Crit Rev Biotechnol ; 44(2): 236-254, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642423

RESUMEN

Nowadays, rapidly increasing production, use and disposable of plastic products has become one of the utmost environmental issues. Our current circumstances in which the food supply chain is demonstrated as containing plastic particles and other plastic-based impurities, represents a significant health risk to humans, animals, and environmental alike. According to this point of view, biodegradable plastic material aims to produce a more sustainable and greener world with a lower ecological impact. Bioplastics are being investigated as an environmentally friendly candidate to address this problem and hence global bioplastic production has seen significant growth and expansion in recent years. This article focuses on a few critical issues that must be addressed for bioplastic production to become commercially viable. Although the reduction of fruit and vegetable waste biomass has an apparent value in terms of environmental benefits and sustainability, commercial success at industrial scale has remained flat. This is due to various factors, including biomass feedstocks, pretreatment technologies, enzymatic hydrolysis, and scale-up issues in the industry, all of which contribute to high capital and operating costs. This review paper summarizes the global overview of bioplastics derived from fruit and vegetable waste biomass. Furthermore, economic and technical challenges associated with industrialization and diverse applications of bioplastics in biomedical, agricultural, and food-packaging fields due to their excellent biocompatibility properties are reviewed.HighlightsReview of the diverse types and characteristics of sustainability of biobased plasticsImproved pretreatment technologies can develop to enhance greater yieldEnzyme hydrolysis process used for bioplastic extraction & hasten industrial scale-upFocus on technical challenges facing commercialized the bioplasticsDetailed discussion on the application for sustainability of biodegradable plastics.


Asunto(s)
Frutas , Verduras , Animales , Humanos , Plásticos , Biopolímeros
2.
Glob Chall ; 6(6): 2100120, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35712023

RESUMEN

Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry. Several MXene-based nanomaterials with remarkable properties have been proposed, synthesized, and used in environmental remediation applications. In this work, a comprehensive review of the state-of-the-art research progress on the promising potential of surface functionalized MXenes as photocatalysts, adsorbents, and membranes for wastewater treatment is presented. The sources, composition, and effects of wastewater on human health and the environment are displayed. Furthermore, the synthesis, surface functionalization, and characterization techniques of merit used in the study of MXenes are discussed, detailing the effects of a range of factors (e.g., PH, temperature, precursor, etc.) on the synthesis, surface functionalization, and performance of the resulting MXenes. Finally, the limits of MXenes and MXene-based materials as well as their potential future research directions, especially for wastewater treatment applications are highlighted.

3.
Expert Opin Drug Deliv ; 19(4): 355-382, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35152815

RESUMEN

INTRODUCTION: The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED: The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer, GO-mediated photothermal therapy, and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION: GO nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Besides DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. DOX-loaded GO nanoparticles have demonstrated theranostic potential. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Nanopartículas , Neoplasias , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Oro , Grafito/química , Humanos , Nanocompuestos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico
4.
Bioresour Technol ; 348: 126708, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066128

RESUMEN

Industrial metal ion pollution has been considered the chief source of water contaminants all over the world. In the present research, we have prepared gum tragacanth cross-linked 2-hydroxyethyl methacrylate-co-acrylamide (GT-cl-(HEMA-co-AAm)) hydrogel and gum tragacanth cross-linked 2-hydroxyethyl methacrylate-co-acrylamide/zinc oxide (GT-cl-(HEMA-co-AAm)/ZnO) hydrogel composite with better Hg2+ adsorption capability. GT-cl-(HEMA-co-AAm)/ZnO hydrogel composite (154.8 mg g-1) exhibited higher Hg2+ adsorption than GT-cl-(HEMA-co-AAm) hydrogel. To address the performance of GT-cl-(HEMA-co-AAm) hydrogel and GT-cl-(HEMA-co-AAm)/ZnO hydrogel composite, batch adsorption experiments were successfully conducted under different optimised conditions. At last, in-vitro antibacterial activities of Hg2+ loaded GT-cl-(HEMA-co-AAm) and GT-cl-(HEMA-co-AAm)/ZnO were performed in two different well Staphylococcus aureus (gram-positive) and Pseudomonas aeruginosa (gram-negative) bacteria. As a positive control, ampicillin was employed against both types of bacteria. This methodology for the reusability of material has a great ecofriendly impression for minimising secondary waste derived from adsorption and can help design upgraded antibacterial agents.


Asunto(s)
Mercurio , Nanocompuestos , Óxido de Zinc , Antibacterianos , Hidrogeles , Polisacáridos
5.
Bioresour Technol ; 340: 125644, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34332449

RESUMEN

Tremendous population growth and industrialization have increased energy consumption unprecedentedly. The depletion of fossil-based energy supplies necessitates the exploration of solar, geothermal, wind, hydrogen, biodiesel, etc. as a clean and renewable energy source. Most of these energy sources are intermittent, while bioelectricity, biodiesel, and biohydrogen can be produced using abundantly available organic wastes regularly. The production of various energy resources requires materials that are costly and affect the applicability at a large scale. Biomass-derived materials (biochar) are getting attention in the field of bioenergy due to their simple method of synthesis, high surface area, porosity, and availability of functional groups for easy modification. Biochar synthesis using various techniques is discussed and their use as an electrode (anodic/cathodic) in a microbial fuel cell (MFC), catalysts in transesterification, and anaerobic digestion for energy production are reviewed. Renewable energy production using biochar would be a sustainable approach to create an energy secure world.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biocombustibles , Biomasa , Carbón Orgánico , Hidrógeno/análisis , Energía Renovable
6.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418849

RESUMEN

Metallic substrates and polymer adhesive in composite-metal joints have a relatively large coefficient of thermal expansion (CTE) mismatch, which is a barrier in the growing market of electric vehicles and their battery structures. It is reported that adding carbon nanotubes (CNTs) to the adhesive reduces the CTE of the CNT-enhanced polymer adhesive multi-material system, and therefore when used in adhesively bonded joints it would, theoretically, result in low CTE mismatch in the joint system. The current article presents the influence of two specific mass ratios of CNTs on the CTE of the enhanced polymer. It was observed that the addition of 1.0 wt% and 2.68 wt% of multi-walled CNTs (MWCNTs) decreased the CTE of the polymer adhesive from 7.5×10-5 °C-1 (pristine level) to 5.87×10-5 °C-1 and 4.43×10-5 °C-1, respectively, by 22% and 41% reductions.

7.
Bioresour Technol ; 297: 122481, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31796379

RESUMEN

The transformation of biomass using steam gasification is a chemical route to facilitate changes in organic or residue supported carbonaceous substances addicted to carbon mono-oxide, hydrogen including carbon-di-oxide, etc. However, to commercialize the method of steam gasification, the hurdles persist during the gasification as well as downstream processing. This article delivers a summary of the different approaches that are described in the previous studies to achieve H2 refinement and adaptation within the gasifier system. These include advanced aspects in the research and development of biomass gasification (alike advancements under the gasification operation). The upshot of diverse operating conditions like steam flow rate, operating temperature, moisture content, gasifier agents, residence time, biomass to air, steam to biomass, equivalence ratio, etc. towards the execution of biomass gasifier. This review accomplishes that the interdependence of several issues must be considered in point to optimise the producer gas.


Asunto(s)
Hidrógeno , Vapor , Biomasa , Carbono , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA