RESUMEN
Chilli, one of the most popular vegetables in the world is infested by many insect-pests and diseases. Fipronil, a phenylpyrazole class insecticide is used to manage insect-pests on chilli. The present study aimed to analyze the dissipation patterns and residual concentrations of the fipronil and its metabolites in chilli fruits during the Kharif season of 2020-21, in semi-arid environment. In the study, fipronil was applied to the plants twice, with a 10-day gap between treatments, using a 5 % suspension concentrate. The applications were undertaken using two separate concentrations i.e. the lower dosage of 40 g a.i. ha-1 and higher dosage of 80 g a.i. ha-1. There were four sets of data for each concentration. The chilli crop was systematically sampled at predetermined intervals after the application of the second spray. The procedure encompassed utilizing the modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) technique for extraction and purification, followed by analyzing the resulting residues using Gas Chromatography Electron Capture Detector. Gas Chromatography- Mass Spectrometry was subsequently conducted for the confirmation of the findings. The research revealed that the mean initial deposit of fipronil and its metabolites (desulfinyl, sulphide, and sulfone) at the authorized dosage was determined to be 0.574, 0.123, 0.031, and 0.180 mg kg-1, respectively. In contrast, when administered at twice the prescribed dosage, the mean first deposit was 1.204, 0.230, 0.067, and 0.382 mg kg-1. The half-life values of these residues exhibited a range of 1.2-4.1 days for both dosages. A prudent waiting duration was determined for the doses, leading to the conclusion that an average interval of 7 days is deemed safe for harvesting chilli peppers. The significance of this discovery is related to the maximum residue limits of 0.001 mg kg-1 for fipronil in green chilli, as established by the Food Safety and Standards Authority of India. This study provides significant insights into fipronil's persistence and proper management in chilli plant cultivation, emphasizing the importance of following prescribed dosages and designated waiting intervals to ensure the safety of food products.
RESUMEN
Black seed oil (BSO), derived from the seeds of the Nigella sativa plant, has garnered attention for its potential anti-cancer properties, particularly in the context of colon cancer. Its active compound, thymoquinone, may help inhibit cancer cell growth and induce apoptosis in colon cancer cells. Additionally, black seed oil's anti-inflammatory and antioxidant effects could contribute to a healthier gut environment, potentially reducing cancer risk. Therefore, this study synthesized pH-sensitive alginate beads to deliver BSO into the colon in a controlled-release manner without releasing the drug at pH 1.2 (stomach), thus providing a well-defined release pattern at pH 6.8. The use of electrospray technology improves process performance by making it easier to formulate small, homogeneous beads with a higher rate of swelling and diffusion in the gastrointestinal medium. The formulated beads were characterized by an ex-vivo mucoadhesive strength test, bead size, sphericity factor (SF), encapsulation efficiency (EE), scanning electron microscope (SEM), in vitro swelling behavior (SB), and in vitro drug release in acidic and buffer media. All these manufactured beads demonstrated modest sizes of 0.58 ± 0.01 mm and spherical shape of 0.03 ± 0.00 mm in this testing. The formulation showed promising floating and releasing properties in vitro. With a very low cumulative percentage of beads, the oil EE of 90.13% ± 0.93% was high, and the release study demonstrated more than 90% in pH 6.8 with good floating nature in the stomach. Additionally, the beads were evenly spaced throughout the intestine. The electrospraying approach used in this protocol can be reproducible, yielding consistent outcomes. Therefore, this protocol can be used for large-scale production for commercialization purposes.
Asunto(s)
Alginatos , Aceites de Plantas , Alginatos/química , Concentración de Iones de Hidrógeno , Aceites de Plantas/química , Nigella sativa/química , Ácido Glucurónico/química , Benzoquinonas/química , Semillas/química , CarumRESUMEN
Globally, Strongyloides stercoralis is a prevalent nematode parasite infecting over 600 million individuals, predominantly in tropical regions. Despite its widespread occurrence, it is frequently underdiagnosed and neglected, posing significant health risks, particularly to immunocompromised individuals. This parasite's life cycle includes a concerning capability for autoinfection, potentially leading to hyperinfection syndrome with high mortality rates. Alcoholism is recognized as a major risk factor for exacerbating S. stercoralis infections due to its harmful impact on the immune system. Chronic alcohol consumption impairs adaptive immunity by reducing T-cell and B-cell function, which facilitates parasitic infections. This review examines the complex relationship between alcohol abuse and strongyloidiasis, emphasizing the molecular mechanisms involved. Diagnostic challenges and treatment options, particularly the efficacy of antiparasitic drugs like ivermectin, are also discussed. Understanding these interactions is essential for developing improved diagnostic and therapeutic strategies to combat strongyloidiasis, especially among vulnerable populations, highlighting areas for future study.
RESUMEN
Decursin is a pyranocoumarin compounds which are rare secondary metabolic plant products, isolated from the roots of Angelica gigas (A. gigas). The native Korean species Angelica gigas Nakai (AGN) is widely used as a remedy for a variety of medical conditions including hematopoiesis, improving women's circulation, as sedatives, analgesics and tonic. It is unique because of the presence of substantial amounts of pyranocoumarins including decursin, decursinol, and decursinol angelate. In this review, we provide a comprehensive insight into the distribution, morphology, and chemical composition of A. gigas. A detailed discussion regarding the biological applications of decursin based on the literature retrieved from PubMed, ScienceDirect, Scopus, and Google Scholar from 2000 to the present has been discussed. Both in vitro and in vivo studies have demonstrated that decursin has potential neuroprotective, anti-inflammatory, anti-melanogenic, anti-angiogenic, antioxidant, and anti-visceral properties. Mechanistic findings establish its significance in regulating important signalling pathways, triggering apoptosis, and preventing metastasis in different cancer types. The review additionally addressed the isolation methods, biosynthesis, physiochemical characteristics, toxicity and pharmacokinetic profile of decursin. The present state of clinical studies including A. gigas is investigated, emphasizing its advancements and possibilities in the field of translational medicine.
Asunto(s)
Angelica , Benzopiranos , Butiratos , Descubrimiento de Drogas , Humanos , Butiratos/farmacología , Butiratos/química , Butiratos/uso terapéutico , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Angelica/química , Animales , Desarrollo de MedicamentosRESUMEN
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
RESUMEN
A series of resveratrol surrogate molecules were designed, synthesized and biologically evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) along with anti-oxidant activity as potential novel multifunctional agents against Alzheimer's disease (AD). Six novel compounds were synthesized by reacting (E)-4-(3,5-Dimethoxystyryl) aniline with benzaldehyde and some selected derivatives of benzaldehyde in the presence of ethanol and a few drops of glacial acetic acid which followed the general scheme involved in the formation of Schiff bases. The spectral analysis data including FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy results were found to be in good agreement with the newly synthesized compounds (Resveratrol Surrogate Molecules 1-6). The synthesized compounds were evaluated for their dual cholinesterase inhibitory activities, cytotoxic effect, and anti-oxidant potential. The results showed that compound RSM5 showed potent inhibitory activity against AChE and BChE. In, addition the cytotoxicity of the compound RSM5 is less and found to be within the desirable limit indicating the potential safety of RSM5. Also, it possesses substantial anti-oxidant activity which qualifies RSM5 as an anti-AD agent. Taken together, these findings demonstrate that the molecule RSM5 had the most multifunctional properties and could be a promising lead molecule for the future development of drugs for Alzheimer's treatments.
Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Antioxidantes , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Diseño de Fármacos , Resveratrol , Animales , Humanos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Butirilcolinesterasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Picratos/antagonistas & inhibidores , Resveratrol/farmacología , Resveratrol/química , Resveratrol/síntesis química , Estilbenos/química , Estilbenos/farmacología , Estilbenos/síntesis química , Relación Estructura-Actividad , Benzaldehídos/química , Benzaldehídos/farmacologíaRESUMEN
This study employs a comprehensive approach combining protein retrieval, sequence alignment, and molecular dynamics simulations to investigate the structural dynamics and stability of wild-type KRas and its mutated variants (G12C, G12D, G12V, and G13D). The selected protein structures were retrieved from the Protein Data Bank (PDB) and prepared by using visual molecular dynamics (VMD) software. Sequence alignment using Clustal Omega provided a detailed comparison of the amino acid sequences, focusing on key mutation sites. Molecular dynamics simulations, performed with Gromacs, revealed distinct conformational changes and stability patterns in the wild-type and mutated KRas proteins over 100 ns. Clustering analysis identified higher conformational changes in the second α-helix of the mutated variants. The root-mean-square deviation (RMSD) distribution analysis showed variant-specific conformational dynamics, with G12V and G12D exhibiting slightly higher average RMSD values. Furthermore, clustering and RMSD analyses of specific amino acid residues (12, 13, 51, and 118) highlighted their roles in maintaining overall stability and influencing structural dynamics. The results indicate that mutations at positions 12 and 13 disrupt normal cycling between wild and mutated variants, leading to the persistent activation of KRas. Additionally, principal component analysis (PCA) elucidated unique conformational dynamics in mutated variants. Free energy landscape (FEL) analysis revealed alterations in the thermodynamic stability of mutated variants compared with the wild type. Overall, this study provides a detailed understanding of the structural changes associated with oncogenic mutations in KRas, offering insights crucial for targeted therapeutic strategies in KRas-driven cancers.
RESUMEN
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
RESUMEN
Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting.
Asunto(s)
Liberación de Fármacos , Mesalamina , Almidón , Comprimidos , Mesalamina/química , Mesalamina/farmacocinética , Conejos , Almidón/química , Animales , Humanos , Concentración de Iones de Hidrógeno , Fosforilación , Preparaciones de Acción Retardada/química , Colon/metabolismoRESUMEN
Lawsone, a naturally occurring organic compound also called hennotannic acid, obtained mainly from Lawsonia inermis (Henna). It is a potential drug-like molecule with unique chemical and biological characteristics. Traditionally, henna is used in hair and skin coloring and is also a medicinal herb for various diseases. It is also widely used as a starting material for the synthesis of various drug molecules. In this review, we investigate on the chemistry, biosynthesis, physical and biological properties of lawsone. The results showed that lawsone has potential antioxidant, anti-inflammatory, antimicrobial and antitumor properties. It also induces cell cycle inhibition and programmed cell death in cancer, making it a potential chemotherapeutic agent. Additionally, inhibition of pro-inflammatory cytokine production makes it an essential treatment for inflammatory diseases. Exploration of its biosynthetic pathway can pave the way for its development into targets for new drug development. In future, well-thought-out clinical studies should be made to verify its safety and efficacy.
Asunto(s)
Naftoquinonas , Humanos , Naftoquinonas/farmacología , Naftoquinonas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Animales , Lawsonia (Planta)/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/químicaRESUMEN
Since the earliest days, people have been employing herbal treatments extensively around the world. The development of phytochemical and phytopharmacological sciences has made it possible to understand the chemical composition and biological properties of a number of medicinal plant products. Due to certain challenges like large molecular weight and low bioavailability, some components of herbal extracts are not utilized for therapeutic purposes. It has been suggested that herbal medicine and nanotechnology can be combined to enhance the benefits of plant extracts by lowering dosage requirements and adverse effects and increasing therapeutic activity. Using nanotechnology, the active ingredient can be delivered in an adequate concentration and transported to the targeted site of action. Conventional therapy does not fulfill these requirements. This review focuses on different skin diseases and nanotechnology-based herbal medicines that have been utilized to treat them.
RESUMEN
The pursuit of advanced multifunctional compounds has gained significant momentum in recent scientific endeavours. This study is dedicated to elucidating the synthesis, rigorous characterization, and multifaceted applications-encompassing anti-corrosion, antimicrobial, and antioxidant properties-of Diethyl 4-(5-bromo-1H-indol-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. The 1,4-dihydropyridine derivative was meticulously synthesized through a strategic reaction of ethyl acetoacetate, ammonium acetate, and 5-bromoindole-3-carboxaldehydein the ethanol medium at 60 C. Subsequent spectral validations were conducted using sophisticated techniques, namely FTIR, NMR, and Mass spectrometry, resulting in data that perfectly resonated with the hypothesized chemical structure of the compound. Its anti-corrosive potential was assessed on mild steel subjected to an aggressive acidic environment, employing comprehensive methodologies like gravimetric analysis, Tafel polarization, and EIS. Concurrently, its antimicrobial prowess was ascertained against a spectrum of bacterial and fungal pathogens viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas, Candida albicansandAspergillusniger, leveraging the disc diffusion method and using Gentamicin as a reference standard.The empirical results illustrated a substantial decrement in corrosion rates with ascending concentrations of the organic compound, achieving an apex of anti-corrosive efficacy at 81.89% for a concentration of 2 × 103 M. Furthermore, the compound outperformed Gentamicin in antimicrobial screenings, manifesting superior efficacy against all tested pathogens. The antioxidant potential, quantified using the DPPH free radical scavenging assay against ascorbic acid as a benchmark, was found to have an IC50 value of 113.964 ± 0.076 µg/ml.This comprehensive investigation accentuates the paramount potential of the synthesized dihydropyridine derivative in diverse domains-from industrial applications as a corrosion inhibitor to therapeutic avenues given its pronounced antimicrobial and antioxidant capabilities. The compelling results obtained pave the way for expansive research and development initiatives cantered around this multifaceted compound.
RESUMEN
Chilli is an indispensable food item in the daily life of humans but it is affected by many insects, so various pesticides, including spiromesifen, are applied to chilli crops to protect this crop from insect infestation. However, the use of pesticides poses environmental and health issues. These issues have raised the demand for pesticide-free chillies among consumers. The primary aim of this study was to assess the efficacy of various decontamination methods in removing spiromesifen residues from chilli fruits. A randomized block design was employed to conduct a supervised field experiment at the Rajasthan Agricultural Research Institute in Durgapura, Jaipur, India. The samples of chillies treated with pesticides are subjected to seven different homemade techniques. The samples were extracted using the QuEChERS method, known for its efficiency, affordability, simplicity, robustness, and safety. The analysis of spiromesifen residues was conducted using gas chromatography (GC) equipped with an electron capture detector (ECD), and the results were verified using gas chromatography-mass spectrometry (GC-MS). Out of several decontamination methods, the lukewarm water treatment was more effective than any other decontamination method, which led to the highest elimination of spiromesifen residue, whereas rinsing with tap water eliminates the least amount of spiromesifen residue. So, the lukewarm water treatment is a safe, cost-effective, and eco-friendly approach to remove spiromesifen residues from Chilli.
RESUMEN
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
RESUMEN
Background: Microorganisms are crucial in our ecosystem, offering diverse functions and adaptability. The UNGA Science Summit has underscored the importance of understanding microbes in alignment with the UN Sustainable Development Goals. Bacillus anthracis poses significant challenges among various microorganisms due to its harmful effects on both soil and public health. Our study employed computational techniques to investigate the inhibitory effects of curcumin and mangiferin on Bacillus anthracis, with the aim of presenting a novel bio-based approach to microbial management. Methods: Employing high-throughput screening, we identified potential binding sites on B. anthracis. Molecular docking revealed that curcumin and mangiferin, when synergistically combined, exhibited strong binding affinities at different sites on the bacterium. Our findings demonstrated a significant drop in binding free energy, indicating a stronger interaction when these compounds were used together. Findings: Results of Molecular docking indicated binding energies of -8.45 kcal/mol for mangiferin, -7.68 kcal/mol for curcumin, and a notably higher binding energy of -19.47 kcal/mol for the combination of mangiferin and curcumin with CapD protein. Molecular dynamics simulations further validated these interactions, demonstrating increased stability and structural changes in the bacterium. Conclusion: This study highlights the effectiveness of natural compounds like curcumin and mangiferin in microbial management, especially against challenging pathogens like B. anthracis. It emphasizes the potential of sustainable, nature-based solutions and calls for further empirical research to expand upon these findings.
RESUMEN
Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.
RESUMEN
Background: Brassica oleracea var. botrytis is an annual or biennial herbaceous vegetable plant in the Brassicaceae family notable for its edible blossom head. A lot of effort has gone into finding defense-associated proteins in order to better understand how cauliflower and pathogens interact. Endophytes are organisms that live within the host plant and reproduce. Endophytes are bacteria and fungi that reside in plant tissues and can either help or harm the plant. Several species have aided molecular biologists and plant biotechnologists in various ways. Water is essential for a healthy cauliflower bloom. When the weather is hot, this plant dries up, and nitrogen scarcity can be detrimental to cauliflower growth. Objective: The study sought to discern plant growth promoting (PGP) compounds that can amplify drought resilience and boost productivity in cauliflower. Methods: Investigations were centered on endophytes, microorganisms existing within plant tissues. The dual role of beneficial and detrimental Agrobacterium was scrutinized, particularly emphasizing the ethylene precursor compound, 1-amino-cyclopropane-1-carboxylic acid (ACCA). Results: ACCA possessed salient PGP traits, particularly demonstrating a pronounced enhancement of drought resistance in cauliflower plants. Specifically, during the pivotal marketable curd maturity phase, which necessitates defense against various threats, ACCA showcased a binding energy of -8.74 kcal/mol. Conclusion: ACCA holds a significant promise in agricultural productivity, with its potential to boost drought resistance and cauliflower yield. This could be particularly impactful for regions grappling with high temperatures and possible nitrogen shortages. Future research should explore ACCA's performance under diverse environmental settings and its applicability in other crops.
RESUMEN
Alginate is a natural biopolymer widely studied for pharmaceutical applications due to its biocompatibility, low toxicity, and mild gelation abilities. This review summarizes recent advances in alginate-based encapsulation systems for targeted drug delivery. Alginate formulations like microparticles, nanoparticles, microgels, and composites fabricated by methods including ionic gelation, emulsification, spray drying, and freeze drying enable tailored drug loading, enhanced stability, and sustained release kinetics. Alginate microspheres prepared by spray drying or ionic gelation provide gastric protection and colon-targeted release of orally delivered drugs. Alginate nanoparticles exhibit enhanced cellular uptake and tumor-targeting capabilities through the enhanced permeation and retention effect. Crosslinked alginate microgels allow high drug loading and controlled release profiles. Composite alginate gels with cellulose, chitosan, or inorganic nanomaterials display improved mechanical properties, mucoadhesion, and tunable release kinetics. Alginate-based wound dressings containing antimicrobial nanoparticles promote healing of burns and chronic wounds through sustained topical delivery. Although alginate is well-established as a pharmaceutical excipient, more extensive in vivo testing is needed to assess clinical safety and efficacy of emerging formulations prior to human trials. Future opportunities include engineered systems combining stimuli-responsiveness, active targeting, and diagnostic capabilities. In summary, this review discusses recent advances in alginate encapsulation techniques for oral, transdermal, and intravenous delivery, with an emphasis on approaches enabling targeted and sustained drug release for enhanced therapeutic outcomes.
RESUMEN
Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
Asunto(s)
Quempferoles , Síndrome de Dificultad Respiratoria , Humanos , Quempferoles/farmacología , Quempferoles/uso terapéutico , Quempferoles/química , Fosfatidilinositol 3-Quinasas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Envejecimiento , Síndrome de Dificultad Respiratoria/tratamiento farmacológicoRESUMEN
The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-ß (TGF-ß) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-ß pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-ß signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-ß modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-ß signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-ß is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-ß signalling landscape.