Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
ACS Appl Mater Interfaces ; 16(30): 39181-39194, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39012897

RESUMEN

Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.

2.
ACS Appl Mater Interfaces ; 16(25): 32209-32219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863333

RESUMEN

Solid-state polymer electrolytes (SPEs), such as poly(ethylene oxide) (PEO), have good flexibility when compared to ceramic-type solid electrolytes. Therefore, it could be an ideal solid electrolyte for zero-excess all-solid-state Li metal battery (ZESSLB), also known as anode-free all-solid-state Li battery, development by offering better contact to the Cu current collector. However, the low Coulombic efficiencies observed from polymer type solid-state Li batteries (SSLBs) raise the concern that PEO may consume the limited amount of Li in ZESSLB to fail the system. Here, we designed ZESSLBs by using all-ceramic half-cells and an extra PEO electrolyte interlayer to study the reactivity between PEO and freshly deposited Li under a real battery operating conduction. By shuttling active Li back from the anode to the cathode, the PEO SPEs can be separated from the ZESSLBs for experimental studies without the influence from cathode materials or possible contamination from the usage of Li foil as the anode. Electrochemical cycling of ZESSLBs shows that the capacities of ZESSLBs with solvent-free and solvent-casted PEO SPEs significantly degraded compared to the ones with Li metal as the anode for the all-solid-state Li batteries. The fast capacity degradation of ZESSLBs using different types of PEO SPEs is evidenced to be associated with Li reacting with PEO, residual solvent, and water in PEO and dead Li formation upon the presence or absence of residual solvent. The results suggest that avoiding direct contact between the PEO electrolyte and deposited lithium is necessary when there is only a limited amount of Li available in ZESSLBs.

3.
ACS Nano ; 18(27): 17924-17938, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937963

RESUMEN

The up-to-date lifespan of zero-excess lithium (Li) metal batteries is limited to a few dozen cycles due to irreversible Li-ion loss caused by interfacial reactions during cycling. Herein, a chemical prelithiated composite interlayer, made of lithiophilic silver (Ag) and lithiophobic copper (Cu) in a 3D porous carbon fiber matrix, is applied on a planar Cu current collector to regulate Li plating and stripping and prevent undesired reactions. The Li-rich surface coating of lithium oxide (Li2O), lithium carboxylate (RCO2Li), lithium carbonates (ROCO2Li), and lithium hydride (LiH) is formed by soaking and directly heating the interlayer in n-butyllithium hexane solution. Although only a thin coating of ∼10 nm is created, it effectively regulates the ionic and electronic conductivity of the interlayer via these surface compounds and reduces defect sites by reactions of n-butyllithium with heteroatoms in the carbon fibers during formation. The spontaneously formed lithiophilic-lithiophobic gradient across individual carbon fiber provides homogeneous Li-ion deposition, preventing concentrated Li deposition. The porous structure of the composite interlayer eliminates the built-in stress upon Li deposition, and the anisotropically distributed carbon fibers enable uniform charge compensation. These features synergistically minimize the side reactions and compensate for Li-ion loss while cycling. The prepared zero-excess Li metal batteries could be cycled 300 times at 1.17 C with negligible capacity fading.

4.
Small Methods ; : e2400081, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686691

RESUMEN

High energy density electrochemical systems such as metal batteries suffer from uncontrollable dendrite growth on cycling, which can severely compromise battery safety and longevity. This originates from the thermodynamic preference of metal nucleation on electrode surfaces, where obtaining the crucial information on metal deposits in terms of crystal orientation, plated volume, and growth rate is very challenging. In situ liquid phase transmission electron microscopy (LPTEM) is a promising technique to visualize and understand electrodeposition processes, however a detailed quantification of which presents significant difficulties. Here by performing Zn electroplating and analyzing the data via basic image processing, this work not only sheds new light on the dendrite growth mechanism but also demonstrates a workflow showcasing how dendritic deposition can be visualized with volumetric and growth rate information. These results along with additionally corroborated 4D STEM analysis take steps to access information on the crystallographic orientation of the grown Zn nucleates and toward live quantification of in situ electrodeposition processes.

5.
RSC Adv ; 14(6): 3845-3856, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38274173

RESUMEN

The effect of two atmospheric post-treatment conditions directly after the KOH activation of polyacrylonitrile-based nanofibres is studied in this work. As post-treatment different N2 : O2 flow conditions, namely high O2-flow and low O2-flow, are applied and their impact on occurring reactions and carbon nanofibres' properties is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Raman spectroscopy, elemental analysis and CO2 and Ar gas adsorption. At high O2-flow conditions a pyrophoric effect was observed on the KOH-activated carbon nanofibers. Based on the obtained results from the TGA and DSC the pyrophoric effect is attributed to the oxidation reactions of metallic potassium formed during the KOH activation process and a consequent carbon combustion reaction. Suppression of this pyrophoric effect is achieved using the low O2-flow conditions due to a lower heat formation of the potassium oxidation and the absence of carbon combustion. Compared to the high O2-flow samples no partial destruction of the carbon nanofibers is observed in the SEM images. The determination of the adsorption isotherms, the surface area, the pore size distribution and the isosteric enthalpies of adsorption show the superior properties under low O2-flow conditions. The present micropore volume is increased from 0.424 cm3 g-1 at high O2-flow to 0.806 cm3 g-1 for low O2-flow samples, resulting in an increase of CO2 adsorption capacity of 38% up to 6.6 mmol g-1 at 1 bar. This significant improvement clearly points out the importance of considering highly exothermic potassium oxidation reactions and possible post-treatment strategies when applying KOH activation to electrospun carbon nanofiber materials.

6.
ACS Appl Energy Mater ; 6(23): 12138, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38098870

RESUMEN

[This corrects the article DOI: 10.1021/acsaem.3c00985.].

7.
iScience ; 26(7): 107097, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37416465

RESUMEN

A robust imaging protocol utilizing laboratory XCT is presented. Hybrid 2D/3D imaging at different scales with real-time monitoring allowed to assess, in operation, the evolution of zinc electrodes within three environments, namely alkaline, near-neutral, and mildly acidic. Different combinations of currents were used to demonstrate various scenarios exhibiting both dendritic and smooth deposition of active material. Directly from radiograms, the volume of the electrode and therefore its growth/dissolution rate was estimated and compared against tomographic reconstructions and theoretical values. The protocol combines simplistic cell design with multiple three-dimensional and two-dimensional acquisitions at different magnifications, providing a unique insight into electrode's morphology evolution within various environments.

8.
ACS Appl Mater Interfaces ; 15(29): 34973-34982, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37442800

RESUMEN

Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10-3 S cm-1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the 'Vitrification zone' where the precursors undergo homogenization and amorphization, 'Intermediary zone' where Li3PS4 and Li4GeS4 are formed, and the 'Product stage' where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10-3 S cm-1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10-3 S cm-1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.

9.
Adv Mater ; 35(31): e2300936, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37104167

RESUMEN

An exact understanding of the conductivity of individual fibers and their networks is crucial to tailor the overall macroscopic properties of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs). Therefore, microelectrical properties of CNF networks and nanoelectrical properties of individual CNFs, carbonized at temperatures from 600 to 1000 °C, are studied by means of conductive atomic force microscopy (C-AFM). At the microscale, the CNF networks show good electrical interconnections enabling a homogeneously distributed current flow. The network's homogeneity is underlined by the strong correlation of macroscopic conductivities, determined by the four-point-method, and microscopic results. Both, microscopic and macroscopic electrical properties, solely depend on the carbonization temperature and the exact resulting fiber structure. Strikingly, nanoscale high-resolution current maps of individual CNFs reveal a large highly resistive surface fraction, representing a clear limitation. Highly resistive surface domains are either attributed to disordered highly resistive carbon structures at the surface or the absence of electron percolation paths in the bulk volume. With increased carbonization temperature, the conductive surface domains grow in size resulting in a higher conductivity. This work contributes to existing microstructural models of CNFs by extending them by electrical properties, especially electron percolation paths.

10.
Cryst Growth Des ; 23(3): 1522-1529, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36879774

RESUMEN

Solid-state sintering at high temperatures is commonly used to densify solid electrolytes. Yet, optimizing phase purity, structure, and grain sizes of solid electrolytes is challenging due to the lack of understanding of relevant processes during sintering. Here, we use an in situ environmental scanning electron microscopy (ESEM) to monitor the sintering behavior of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) at low environmental pressures. Our results show that while no major morphological changes are observed at 10-2 Pa and only coarsening is induced at 10 Pa, environmental pressures of 300 and 750 Pa lead to the formation of typically sintered LATP electrolytes. Furthermore, the use of pressure as an additional parameter in sintering allows the grain size and shape of electrolyte particles to be controlled.

11.
Small ; 19(28): e2300850, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36974581

RESUMEN

The structural and morphological changes of the Lithium superionic conductor Li10 GeP2 S12 , prepared via a widely used ball milling-heating method over a comprehensive heat treatment range (50 - 700 °C), are investigated. Based on the phase composition, the formation process can be distinctly separated into four zones: Educt, Intermediary, Formation, and Decomposition zone. It is found that instead of Li4 GeS4 -Li3 PS4 binary crystallization process, diversified intermediate phases, including GeS2 in different space groups, multiphasic lithium phosphosulfides (Lix Py Sz ), and cubic Li7 Ge3 PS12 phase, are involved additionally during the formation and decomposition of Li10 GeP2 S12 . Furthermore, the phase composition at temperatures around the transition temperatures of different formation zones shows a significant deviation. At 600 °C, Li10 GeP2 S12 is fully crystalline, while the sample decomposed to complex phases at 650 °C with 30 wt.% impurities, including 20 wt.% amorphous phases. These findings over such a wide temperature range are first reported and may help provide previously lacking insights into the formation and crystallinity control of Li10 GeP2 S12 .

12.
J Vis Exp ; (191)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36744797

RESUMEN

With the ever-increasing use of Li-ion batteries, especially due to their adoption in electric vehicles, their safety is in prime focus. Thus, the all-solid-state batteries (ASSBs) that use solid electrolytes instead of liquid electrolytes, which reduce the risk of flammability, have been the center stage of battery research for the last few years. However, in the ASSB, the ion transportation through the solid-solid electrolyte-electrode interface poses a challenge due to contact and chemical/electrochemical stability issues. Applying a suitable coating around the electrode and/or electrolyte particles offers a convenient solution, leading to better performance. For this, researchers are screening potential electronic/ionic conductive and nonconductive coatings to find the best coatings with suitable thickness for long-term chemical, electrochemical, and mechanical stability. Operando transmission electron microscopy (TEM) couples high spatial resolution with high temporal resolution to allow visualization of dynamic processes, and thus is an ideal tool to evaluate electrode/electrolyte coatings via studying (de)lithiation at a single particle level in real-time. However, the accumulated electron dose during a typical high-resolution in situ work may affect the electrochemical pathways, evaluation of which can be time-consuming. The current protocol presents an alternative procedure in which the potential coatings are applied on Si nanoparticles and are subjected to (de)lithiation during operando TEM experiments. The high volume changes of Si nanoparticles during (de)lithiation allow monitoring of the coating behavior at a relatively low magnification. Thus, the whole process is very electron-dose efficient and offers quick screening of potential coatings.


Asunto(s)
Suministros de Energía Eléctrica , Electricidad , Conductividad Eléctrica , Electrodos , Microscopía Electrónica de Transmisión
13.
ChemSusChem ; 16(8): e202202152, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36647610

RESUMEN

Sodium-ion batteries (SIBs) are expected to become alternatives to lithium-ion batteries (LIBs) as next-generation rechargeable batteries, owing to abundant sodium sources and low cost. However, SIBs still use liquid organic electrolytes (LOEs), which are highly flammable and have the tendency to leak. Although inorganic solid electrolytes (ISEs) and solid polymer electrolytes (SPEs) have been investigated for many years, given their higher safety level, neither of them is likely to be commercialized because of the rigidity of ISEs and the low room-temperature ionic conductivity of SPEs. During the last decade, composite polymer electrolytes (CPEs), composed of ISEs and SPEs, exhibiting both relatively high ionic conductivity and flexibility, have gained much attention and are considered as promising electrolytes. However, the ionic conductivities of CPEs are still unsatisfactory for practical application. Hence, this Review focuses on the principle of sodium ion conductors and particularly on recent investigations and development of CPEs.

14.
Adv Sci (Weinh) ; 10(5): e2205012, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529956

RESUMEN

Li7 La3 Zr2 O12 (LLZO)-based all-solid-state Li batteries (SSLBs) are very attractive next-generation energy storage devices owing to their potential for achieving enhanced safety and improved energy density. However, the rigid nature of the ceramics challenges the SSLB fabrication and the afterward interfacial stability during electrochemical cycling. Here, a promising LLZO-based SSLB with a high areal capacity and stable cycle performance over 100 cycles is demonstrated. In operando transmission electron microscopy (TEM) is used for successfully demonstrating and investigating the delithiation/lithiation process and understanding the capacity degradation mechanism of the SSLB on an atomic scale. Other than the interfacial delamination between LLZO and LiCoO2 (LCO) owing to the stress evolvement during electrochemical cycling, oxygen deficiency of LCO not only causes microcrack formation in LCO but also partially decomposes LCO into metallic Co and is suggested to contribute to the capacity degradation based on the atomic-scale insights. When discharging the SSLB to a voltage of ≈1.2 versus Li/Li+ , severe capacity fading from the irreversible decomposition of LCO into metallic Co and Li2 O is observed under in operando TEM. These observations reveal the capacity degradation mechanisms of the LLZO-based SSLB, which provides important information for future LLZO-based SSLB developments.

15.
ChemSusChem ; 15(14): e202200761, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35499149

RESUMEN

The development of highly selective adsorbents for CO2 is a key part to advance separation by adsorption as a viable technique for CO2 capture. In this work, polyacrylonitrile (PAN) based carbon nanofibers (CNFs) were investigated for their CO2 separation capabilities using dynamic gas adsorption. The CNFs were prepared by electrospinning and subsequent carbonization at various temperatures ranging from 600 to 1000 °C. A thorough investigation of the CO2 /N2 selectivity resulted in measured values of 53-106 at 1 bar and 25 °C on CNFs carbonized at 600, 700, or 800 °C. Moreover, the selectivity increased with lower measurement temperatures and lower CO2 partial pressures, reaching values up to 194. Further analysis revealed high long-term stability with no degradation over 300 cycles and fast adsorption kinetics for CNFs carbonized at 600 or 700 °C. These excellent properties make PAN-based CNFs carbonized at 600 or 700 °C promising candidates for the capture of CO2 .

16.
Small ; 18(21): e2200266, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35475572

RESUMEN

High interfacial resistance and unstable interphase between cathode active materials (CAMs) and solid-state electrolytes (SSEs) in the composite cathode are two of the main challenges in current all-solid-state batteries (ASSBs). In this work, the all-phosphate-based LiFePO4 (LFP) and Li1.3 Al0.3 Ti1.7 (PO4 )3 (LATP) composite cathode is obtained by a co-firing technique. Benefiting from the densified structure and the formed redox-active Li3- x Fe2- x - y Tix Aly (PO4 )3 (LFTAP) interphase, the mixed ion- and electron-conductive LFP/LATP composite cathode facilitates the stable operation of bulk-type ASSBs in different voltage ranges with almost no capacity degradation upon cycling. Particularly, both the LFTAP interphase and LATP electrolyte can be activated. The cell cycled between 4.1 and 2.2 V achieves a high reversible capacity of 2.8 mAh cm-2 (36 µA cm-2 , 60 °C). Furthermore, it is demonstrated that the asymmetric charge/discharge behaviors of the cells are attributed to the existence of the electrochemically active LFTAP interphase, which results in more sluggish Li+ kinetics and more expansive LFTAP plateaus during discharge compared with that of charge. This work demonstrates a simple but effective strategy to stabilize the CAM/SSE interface in high mass loading ASSBs.

17.
Sci Rep ; 12(1): 6215, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418198

RESUMEN

Supporting electrolytes contain inert dissolved salts to increase the conductivity, to change microenvironments near the electrodes and to assist in electrochemical reactions. This combined experimental and computational study examines the impact of supporting salts on the ion transport and related limited currents in electrochemical cells. A physical model that describes the multi-ion transport in liquid electrolytes and the resulting concentration gradients is presented. This model and its parameterization are evaluated by the measured limited current of the copper deposition in a CuSO4 electrolyte under a gradually increasing amount of Na2SO4 that acts as a supporting salt. A computational sensibility analysis of the transport model reveals that the shared conductance between the ions lowers the limited currents with larger supporting salt concentrations. When the supporting salt supplies most of the conductance, the electric-field-driven transport of the electrochemically active ions becomes negligible so that the limited current drops to the diffusion-limited current that is described by Fick's first law. The transition from diluted supporting electrolyte to the case of ionic liquids is elucidated with the transport model, highlighting the different physical transport mechanisms in a non-conducting (polar) and a conducting (ionic) solvent.

18.
Sci Rep ; 12(1): 3375, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233048

RESUMEN

Pseudocapacitances such as the hydrogen adsorption on platinum (HAoPt) are associated with faradaic chemical processes that appear as capacitive in their potentiodynamic response, which was reported to result from the kinetics of adsorption processes. This study discusses an alternative interpretation of the partly capacitive response of the HAoPt that is based on the proton transport of ad- or desorbed hydrogen in the double layer. Potentiodynamic perturbations of equilibrated surface states of the HAoPt lead to typical double layer responses with the characteristic resistive-capacitive relaxations that overshadow the fast adsorption kinetics. A potential-dependent double layer representation by a dynamic transmission line model incorporates the HAoPt in terms of capacitive contributions and can computationally reconstruct the charge exchanged in full range cyclic voltammetry data. The coupling of charge transfer with double layer dynamics displays a novel physicochemical theory to explain the phenomenon of pseudocapacitance and the mechanisms in thereon based supercapacitors.

19.
Nanomaterials (Basel) ; 12(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35214982

RESUMEN

The interface between ceramic particles and a polymer matrix in a hybrid electrolyte is studied with high spatial resolution by means of Electrochemical Strain Microscopy (ESM), an Atomic Force Microscope (AFM)-based technique. The electrolyte consists of polyethylene oxide with lithium bis(trifluoromethanesulfonyl)imide (PEO6-LiTFSI) and Li6.5La3Zr1.5Ta0.5O12 (LLZO:Ta). The individual components are differentiated by their respective contact resonance, ESM amplitude and friction signals. The ESM signal shows increased amplitudes and higher contact resonance frequencies on the ceramic particles, while lower amplitudes and lower contact resonance frequencies are present on the bulk polymer phase. The amplitude distribution of the hybrid electrolyte shows a broader distribution in comparison to pure PEO6-LiTFSI. In the direct vicinity of the particles, an interfacial area with enhanced amplitude signals is found. These results are an important contribution to elucidate the influence of the ceramic-polymer interaction on the conductivity of hybrid electrolytes.

20.
Chem Commun (Camb) ; 58(19): 3130-3133, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129189

RESUMEN

Conformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid-electrolyte interface formation. Here, we use operando transmission electron microscopy in an open cell to show that TiO2 coatings on Si/SiO2 particles undergo thickness dependent rupture on battery cycling where thicker coatings crumble more readily than thinner (∼5 nm) coatings, which corroborates the difference in their capacities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA