Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Artif Organs ; 14(1): 52-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21286768

RESUMEN

The objective of this study was to evaluate the effect of protracted storage of dialyzers on the amount of poly(N-vinyl-2-pyrrolidone) (PVP) eluted from polysulfone-group dialysis membranes. We tested five dialysis membranes: APS-15SA (Asahi Kasei Kuraray, wet), CX-1.6U (Toray, moist), FX140 (Fresenius, dry), PES-15Sα (Nipro, dry), and FDX-150GW (Nikkiso, wet). Each dialyzer was stored for 1, 3, 14, and 18 months after sterilization. The dialysis-fluid side compartment was primed with reverse osmosis (RO) water at 500 mL/min for 5 min at 310 K. The blood side compartment was primed with RO water at 200 mL/min for 5 min at 310 K. Finally, 1 L RO water was circulated through the blood side compartment at 200 mL/min for 4 h at 310 K. Eluted PVP was determined by use of the iodine method, using 0.02 N: iodine solution. PVP was mainly eluted from wet-type dialyzers during priming. Thus, the standard 5 min priming of the wet-type dialyzer according to the maker manual inhibits PVP elution during circulation. PVP was eluted in the dialysis-fluid side of the moist-type dialyzer during priming but no PVP was eluted in the blood side. PVP was mainly eluted from dry-type dialyzers during circulation. We recommend more than the standard 5 min priming, particularly for dry-type dialyzers stored for protracted periods, because 5 min insufficient to inhibit PVP elution during circulation.


Asunto(s)
Membranas Artificiales , Polímeros , Diálisis Renal/métodos , Sulfonas , Esterilización , Factores de Tiempo
2.
ASAIO J ; 55(3): 231-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19357496

RESUMEN

Dialysis fluid flow and mass transfer rate of newly developed dialyzers were evaluated using mass transfer correlation equations of dialysis fluid-side film coefficient. Aqueous creatinine clearance and overall mass transfer coefficient for APS-15S (Asahi Kasei Kuraray) as a conventional dialyzer, and APS-15SA (Asahi Kasei Kuraray), PES-150Salpha (Nipro), FPX140 (Fresenius), and CS-1.6U (Toray) as newly developed dialyzers were obtained at a blood-side flow rate (QB) of 200 ml/min, dialysis fluid-side flow rates (QD) of 200-800 ml/min and a net filtration rate (QF) of 0 ml/min. Mass transfer correlation equations between Sherwood number (Sh) containing dialysis fluid-side mass transfer film coefficient and Reynolds number (Re) were formed for each dialyzer. The exponents of Re were 0.62 for APS-15S whereas approximately 0.5 for the newly developed dialyzers. The dialysis fluid-side mass transfer film coefficients of the newly developed dialyzers were higher than those of the conventional dialyzer. Based on the mass transfer correlation equations, introduction of short taper, full baffle of dialyzer jacket and further wave-shaped hollow fiber improves the dialysis fluid flow of the newly developed dialyzers.


Asunto(s)
Diálisis Renal/instrumentación , Diálisis Renal/métodos , Diseño de Equipo , Membranas Artificiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA