Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 126(4): 1090-1100, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406874

RESUMEN

The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) ß2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor ß2 versus ß3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from ß2-N265M mice resisted etomidate suppression of LTP, indicating that the ß2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, ß2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of ß3-N265M mice, we also examined the contributions of ß2- versus ß3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both ß2- and ß3-GABAARs contribute to GABAA,slow inhibition and that both ß2- and ß3-GABAARs contribute to feedback inhibition, whereas only ß3-GABAARs contribute to feedforward inhibition. We conclude that modulation of ß2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that ß2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.


Asunto(s)
Anestésicos Intravenosos/farmacología , Etomidato/farmacología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Front Neural Circuits ; 10: 62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27582691

RESUMEN

Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/fisiología , Neocórtex/fisiología , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Corteza Piriforme/fisiología , Células Piramidales/fisiología , Somatostatina/metabolismo , Animales , Corteza Cerebral/metabolismo , Femenino , Interneuronas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neocórtex/metabolismo , Optogenética , Corteza Piriforme/metabolismo , Células Piramidales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA