Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Nat Commun ; 15(1): 3741, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702301

RESUMEN

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasia Residual , Ratones , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nature ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750365

RESUMEN

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.

3.
Development ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682276

RESUMEN

The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion 7-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7, which is transferred to Frizzled (FZD) to initiate canonical b-catenin signaling. GPR124 remains enigmatic; while its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124/FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function by mouse deletion (Gpr124ΔC). Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, versus Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Further, Gpr124ΔC and recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function is exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion 7-pass transmembrane receptors.

4.
Anal Chem ; 96(19): 7444-7451, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38684052

RESUMEN

Next-generation sequencing offers highly multiplexed and accurate detection of nucleic acid sequences but at the expense of complex workflows and high input requirements. The ease of use of CRISPR-Cas12 assays is attractive and may enable highly accurate detection of sequences implicated in, for example, cancer pathogenic variants. CRISPR assays often employ end-point measurements of Cas12 trans-cleavage activity after Cas12 activation by the target; however, end point-based methods can be limited in accuracy and robustness by arbitrary experimental choices. To overcome such limitations, we develop and demonstrate here an accurate assay targeting a mutation of the epidermal growth factor gene implicated in lung cancer (exon 19 deletion). The assay is based on characterizing the kinetics of Cas12 trans-cleavage to discriminate the mutant from wild-type targets. We performed extensive experiments (780 reactions) to calibrate key assay design parameters, including the guide RNA sequence, reporter sequence, reporter concentration, enzyme concentration, and DNA target type. Interestingly, we observed a competitive reaction between the target and reporter molecules that has important consequences for the design of CRISPR assays, which use preamplification to improve sensitivity. Finally, we demonstrate the assay on 18 tumor-extracted amplicons and 100 training iterations with 99% accuracy and discuss discrimination parameters and models to improve wild type versus mutant classification.


Asunto(s)
Eliminación de Gen , Genes erbB-1 , Técnicas de Genotipaje , Técnicas de Genotipaje/instrumentación , Técnicas de Genotipaje/métodos , Técnicas de Genotipaje/normas , Genes Reporteros/genética , Genes erbB-1/genética , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Reproducibilidad de los Resultados
5.
Cell Rep ; 42(11): 113355, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37922313

RESUMEN

Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Oncogenes , Transformación Celular Neoplásica/genética , Neoplasias/genética , Carcinogénesis/genética , Amplificación de Genes
6.
Cell Rep ; 42(11): 113392, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37925638

RESUMEN

The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.


Asunto(s)
Enfermedad de Alzheimer , Células Endoteliales , Ratones , Adulto , Humanos , Animales , Células Endoteliales/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Multiómica , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Factores de Transcripción/metabolismo
7.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37669225

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Asunto(s)
Antivirales , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , Bioensayo
8.
Nat Commun ; 14(1): 2947, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268690

RESUMEN

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica , Receptores Frizzled , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Retina/metabolismo , Barrera Hematorretinal/metabolismo , Vía de Señalización Wnt
9.
Res Sq ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205380

RESUMEN

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included T, B, NK and myeloid cells, with CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM and conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.

10.
bioRxiv ; 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37205513

RESUMEN

Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also alter duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum. Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression or function. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA) inhibition, regardless of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Linaclotide increased apical membrane expression of DRA in non-CF and CF differentiated enteroids. These data provide insights into the action of linaclotide and suggest linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.

11.
Nature ; 618(7964): 383-393, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258665

RESUMEN

The earliest events during human tumour initiation, although poorly characterized, may hold clues to malignancy detection and prevention1. Here we model occult preneoplasia by biallelic inactivation of TP53, a common early event in gastric cancer, in human gastric organoids. Causal relationships between this initiating genetic lesion and resulting phenotypes were established using experimental evolution in multiple clonally derived cultures over 2 years. TP53 loss elicited progressive aneuploidy, including copy number alterations and structural variants prevalent in gastric cancers, with evident preferred orders. Longitudinal single-cell sequencing of TP53-deficient gastric organoids similarly indicates progression towards malignant transcriptional programmes. Moreover, high-throughput lineage tracing with expressed cellular barcodes demonstrates reproducible dynamics whereby initially rare subclones with shared transcriptional programmes repeatedly attain clonal dominance. This powerful platform for experimental evolution exposes stringent selection, clonal interference and a marked degree of phenotypic convergence in premalignant epithelial organoids. These data imply predictability in the earliest stages of tumorigenesis and show evolutionary constraints and barriers to malignant transformation, with implications for earlier detection and interception of aggressive, genome-instable tumours.


Asunto(s)
Transformación Celular Neoplásica , Evolución Clonal , Lesiones Precancerosas , Selección Genética , Neoplasias Gástricas , Humanos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Evolución Clonal/genética , Inestabilidad Genómica , Mutación , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Organoides/metabolismo , Organoides/patología , Aneuploidia , Variaciones en el Número de Copia de ADN , Análisis de la Célula Individual , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Progresión de la Enfermedad , Linaje de la Célula
13.
Cancer Sci ; 114(7): 2895-2906, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36945114

RESUMEN

The cancer stem cell (CSC) theory features typically rare self-renewing subpopulations that reconstitute the heterogeneous tumor. Identification of molecules that characterize the features of CSCs is a key imperative for further understanding tumor heterogeneity and for the development of novel therapeutic strategies. However, the use of conventional markers of CSCs is still insufficient for the isolation of bona fide CSCs. We investigated organoids that are miniature forms of tumor tissues by reconstructing cellular diversity to identify specific markers to characterize CSCs in heterogeneous tumors. Here, we report that the receptor for hyaluronan-mediated motility (RHAMM) expresses in a subpopulation of CD44+ conventional human colorectal CSC fraction. Single-cell transcriptomics of organoids highlighted RHAMM-positive proliferative cells that revealed distinct characteristics among the various cell types. Prospectively isolated RHAMM+CD44+ cells from the human colorectal cancer tissues showed highly proliferative characteristics with a self-renewal ability in comparison with the other cancer cells. Furthermore, inhibition of RHAMM strongly suppressed organoid formation in vitro and inhibited tumor growth in vivo. Our findings suggest that RHAMM is a potential therapeutic target because it is a specific marker of the proliferative subpopulation within the conventional CSC fraction.


Asunto(s)
Neoplasias Colorrectales , Receptores de Hialuranos , Humanos , Receptores de Hialuranos/metabolismo , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral
14.
Artículo en Inglés | MEDLINE | ID: mdl-36987582

RESUMEN

The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.

15.
Nat Chem Biol ; 18(10): 1065-1075, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35788181

RESUMEN

Aldehyde dehydrogenases (ALDHs) are promising cancer drug targets, as certain isoforms are required for the survival of stem-like tumor cells. We have discovered selective inhibitors of ALDH1B1, a mitochondrial enzyme that promotes colorectal and pancreatic cancer. We describe bicyclic imidazoliums and guanidines that target the ALDH1B1 active site with comparable molecular interactions and potencies. Both pharmacophores abrogate ALDH1B1 function in cells; however, the guanidines circumvent an off-target mitochondrial toxicity exhibited by the imidazoliums. Our lead isoform-selective guanidinyl antagonists of ALDHs exhibit proteome-wide target specificity, and they selectively block the growth of colon cancer spheroids and organoids. Finally, we have used genetic and chemical perturbations to elucidate the ALDH1B1-dependent transcriptome, which includes genes that regulate mitochondrial metabolism and ribosomal function. Our findings support an essential role for ALDH1B1 in colorectal cancer, provide molecular probes for studying ALDH1B1 functions and yield leads for developing ALDH1B1-targeting therapies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aldehídos , Neoplasias del Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Guanidinas , Humanos , Sondas Moleculares , Proteoma/genética
16.
Dev Cell ; 57(13): 1598-1614.e8, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35679862

RESUMEN

The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.


Asunto(s)
Células Madre Mesenquimatosas , Organogénesis , Humanos , Pulmón , Organoides , Vía de Señalización Wnt
17.
Trends Cancer ; 8(10): 870-880, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35773148

RESUMEN

Cancer immunotherapies, particularly immune checkpoint inhibitors, are rapidly becoming standard-of-care for many cancers. The ascendance of immune checkpoint inhibitor treatment and limitations in the accurate prediction of clinical response thereof have provided significant impetus to develop preclinical models that can guide therapeutic intervention. Traditional organoid culture methods that exclusively grow tumor epithelium as patient-derived organoids are under investigation as a personalized platform for drug discovery and for predicting clinical efficacy of chemotherapies and targeted agents. Recently, the patient-derived tumor organoid platform has evolved to contain more complex stromal and immune compartments needed to assess immunotherapeutic efficacy. We review the different methodologies for developing a more holistic patient-derived tumor organoid platform and for modeling the native immune tumor microenvironment.


Asunto(s)
Neoplasias , Organoides , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias/patología , Neoplasias/terapia , Organoides/patología , Medicina de Precisión , Microambiente Tumoral
18.
Mol Ther ; 30(1): 223-237, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33794364

RESUMEN

Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Sistemas CRISPR-Cas , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Mutación , Células Madre/metabolismo
19.
Ann N Y Acad Sci ; 1506(1): 142-163, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34850398

RESUMEN

The test for the cancer stem cell (CSC) hypothesis is to find a target expressed on all, and only CSCs in a patient tumor, then eliminate all cells with that target that eliminates the cancer. That test has not yet been achieved, but CSC diagnostics and targets found on CSCs and some other cells have resulted in a few clinically relevant therapies. However, it has become apparent that eliminating the subset of tumor cells characterized by self-renewal properties is essential for long-term tumor control. CSCs are able to regenerate and initiate tumor growth, recapitulating the heterogeneity present in the tumor before treatment. As great progress has been made in identifying and elucidating the biology of CSCs as well as their interactions with the tumor microenvironment, the time seems ripe for novel therapeutic strategies that target CSCs to find clinical applicability. On May 19-21, 2021, researchers in cancer stem cells met virtually for the Keystone eSymposium "Cancer Stem Cells: Advances in Biology and Clinical Translation" to discuss recent advances in the understanding of CSCs as well as clinical efforts to target these populations.


Asunto(s)
Congresos como Asunto/tendencias , Neoplasias/genética , Células Madre Neoplásicas/fisiología , Informe de Investigación , Investigación Biomédica Traslacional/tendencias , Microambiente Tumoral/fisiología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Neoplasias/metabolismo , Investigación Biomédica Traslacional/métodos
20.
Cell Rep ; 37(9): 110060, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852220

RESUMEN

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Daño del ADN , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA